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Abstract. We provide a sketch of the proof of the non-existence of Kervaire

Invariant one manifolds using equivariant homotopy theory [15]. A treatment
of the statement and history of the problem can be found in “The Arf-Kervaire

problem in algebraic topology: Introduction”. Our goal here is to introduce

the reader to the techniques used to prove the result and to familiarize them
with the kinds of computations needed.
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1. Introduction

The goal of this exposition is to provide a somewhat detailed sketch of the major
points of our proof of the following theorem.

Theorem 1.1. Let θj ∈ π2j+1−2S
0 be represented by a framed manifold of Kervaire

invariant one. If θj is non-zero, then j ≤ 6.

For a detailed explanation of the statement of the theorem and the history of the
problem, the reader is directed to look at our historical paper in this volume: “The
Arf-Kervaire problem in algebraic topology: Introduction”. This paper will focus
on explaining the technical and equivariant aspects of the proof. In particular, we
shall review some of the salient equivariant homotopy, explore the norm functor,
look at particular chain complexes, and compute differentials in the slice spectral
sequence. The reader is also alerted that the determination of differentials via
cohomology operations (§ 7.2) does not appear in the main paper; the proof here
is novel. Several of the theorems (such as the Periodicity Theorem) are presented
in slightly different generality as well.

A brief overview is as follows. We produce a C8-equivariant spectrum Ω̃ and
prove a series of results from which the Kerviare proof follows immediately.

Detection Theorem. If θj exists, then the image in π∗Ω̃
hC8 is non-zero.

Gap Theorem. The group π−2Ω̃C8 is zero.

Periodicity Theorem. The homotopy groups of Ω̃hC8 are 256-periodic.

Homotopy Fixed Point Theorem. The spectra Ω̃C8 and Ω̃hC8 are weakly equiv-
alent.

Thus we begin with an equivariant spectrum Ω̃, and we produce an ordinary
spectrum by taking fixed points.

Definition 1.2. Let Ω be the C8 fixed points of Ω̃:

Ω = Ω̃C8

The Homotopy Fixed Point Theorem shows that we could have equally well cho-
sen to let Ω be the homotopy fixed points. We will sketch proofs of the Gap, Peri-
odicity, and Homotopy Fixed Point theorems in this note. We shall not, however,
prove the Detection Theorem, since this is an application of classical techniques of
a somewhat different flavor than the rest. This has a slight expository difficulty
related to which classes one must invert to produce our spectrum Ω̃. We focus here
on the close connection with the Lubin-Tate spectrum E4, but even still, the flavor
of § 8.2 is different. The interested reader is referred to the main paper for a proof
of the Detection Theorem, the specifics of the inverted classes, and a more detailed
treatment of the theorems sketched herein [15].

2. Basic Introduction to Equivariant Homotopy

Though we will never make it explicit, we shall assume we are working in a rigid
point-set model category whose homotopy theory is the usual homotopy theory of
equivariant spectra [20, 22, 23]. In particular, we shall suppress any assumptions
about fibrancy or cofibrancy of spectra in various constructions, and we shall focus
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on the most important aspects of the theory. The reader is suggested to consult
the survey articles referenced here for more details about the general theory [5, 24].

There are many different (and inequivalent) notions of G-spectra. For our pur-
poses, we consider “honest” G-spectra. These are G-spectra indexed by finite sub-
spaces of an infinite dimensional inner product space that contains every irreducible
representation of G infinitely often. The model categorical notions will not be ex-
plicitly spelled out, and instead we will focus on the computational aspects.

We begin with some standard notation. We will let SG denote any of the nice
categories of equivariant spectra. If X is a G-spectrum, then we shall also denote
by X the image of the restriction functor to any subgroup H of G. The category
of G-spectra is tensored and cotensored over G-spaces, and the function spectra
objects are again G-spectra.

If X and Y are G-spectra, then we shall let [X,Y ] denote the homotopy classes
of G-equivariant maps from X to Y . This is the same as π0 of the G-fixed points
of F (X,Y ). If we there is potential for confusion, we will adorn [X,Y ] with a
subscript G to make clear the group. For a general G-space or spectrum X, we will
let XG denote the fixed point object.

We now recall that the forgetful functor SG → SH has a left and a right adjoint.
The left adjoint, normally written G+∧H− is the “induction” functor, and we have
a natural isomorphism

G+ ∧H X ∼= G/H+ ∧X
whenever X is a G-spectrum. The right adjoint, written FH(G,−) is the “coinduc-
tion” functor. One of the most delightful aspects of the theory is that for G a finite
group, these are actually the same.

Theorem 2.1 (Wirthmüller [30]). We have a natural equivalence

G+ ∧H X ∼= FH(G,X).

We should think of this as the equivariant analogue of the statement that in
spectra, finite coproducts (G+ ∧H X) are the same as finite products (FH(G,X)).
For this reason, coinduction will not be talked about again.

This Wirthmüller isomorphism gives rise to natural isomorphisms

[G+ ∧H X,Y ]G ∼= [X,Y ]H ∼= [X,FH(G, Y )]G ∼= [X,G+ ∧H Y ]G.

2.1. Spheres and Cells. Given an orthogonal representation of V , we can form
two spheres: S(V ), the unit sphere in V , and SV , the one point compactification
of V . These are related by a cofiber sequence in spaces

S(V )+ → S0 → SV ,

making SV the unreduced suspension of S(V ). We remark that for every represen-
tation V , SV has at least 2 fixed points: the origin and the point at infinity. The
inclusion of these points will play a very important role in our proof.

For now, we fix some notation for the representations which will appear.

Definition 2.2. Let σ denote the 1-dimensional sign representation of C2n .
Let λ : Cpn → S1 denote the inclusion of the pnth roots of unity.
Let λ(k) denote the composite of λ with the kth power map on S1.
Let ρ2n denote the regular representation of C2n , and let ρ̄2n denote the quotient

by the trivial representation.
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If we work localized at p, then Sλ(k) is indistinguishable from Sλ(k′) whenever
the p-adic valuation of k and k′ agree. For this reason, we will restrict attention to
the collection λ(pr). Since there is a σ for every cyclic 2-group, when we need to
distinguish the sign representation for C2k , we will denote it by σk.

Although this gives us two very good notions of spheres, our notion of cells will
be somewhat more elementary: we induce up from the standard notions of cells.
Our n-cells are those G-spectra of the form G+∧HDn, where Dn is given the trivial
H-action. Since Dn with the trivial H-action is visibly the restriction of Dn with
the trivial G-action, we consider only cells of the form

G/H+ ∧Dn.

The boundary is of course G/H+ ∧ Sn−1, and we build our notion of CW-complex
with these as our cells. Additionally, understanding how to attach to X cells of the
form G/H+ ∧Dn amounts to understanding

[G/H+ ∧ Sn−1, X]G ∼= [Sn−1, X]H ∼= πn−1(XH).

These kinds of homotopy groups form a rich structure and will be spelled out in
more detail in § 4.

2.2. Geometric Fixed Points and Isotropy Separation. Perhaps the most
difficult and in many ways counter-intuitive aspect of equivariant homotopy theory
is the notion of “fixed points”. In general, the fixed point functor from G-Spectra
to ordinary spectral is very badly behaved. It is not symmetric monoidal, and
it doesn’t commute with infinite suspension. Even if the most elementary cases,
understanding the fixed points is a non-trivial undertaking. For example, the fixed
points for the sphere with a trivial G-action are shockingly complicated [8, 7].

Theorem 2.3 (tom Dieck). As rings, π0(S0G) is the Burnside ring of finite G-sets
A(G).

Already this is much more complicated that what we would expect the fixed
points to be, namely S0. This is also reflected in a splitting of the fixed points into
a wedge of more complicated spectra.

Equivariant homotopy theory has machinery to correct this: geometric fixed
points.

Theorem 2.4. There is a lax symmetric monoidal functor

ΦG : SG → S

such that

ΦG(Σ∞X+) = Σ∞XG
+ .

In other words, the geometric fixed point functor behaves exactly the way our
intuition for fixed points suggests.

Corollary 2.5. As rings, π0(ΦG(S0)) = Z, and for a general virtual representation

V , ΦG(SV ) = SV
G

.

The definition of ΦG will actually prove surprisingly useful. We begin with the
notion of a classifying space and universal space for a family of subgroups of a
group. Let F denote a family of subgroups of G such that if H ∈ F , then all
subgroups and conjugates of H are also in F .



SKETCH OF THE KERVIARE INVARIANT PROOF 5

Definition 2.6. A universal space associated to F is a G-space EF such that

(EF)H '
{
∗ H ∈ F
∅ H /∈ F .

Thus the restriction of EF to any subgroup H ∈ F is H-equivariantly con-
tractible. That such a space exists for a general group follows by mirroring Mil-
nor’s join construction of EG. For cyclic p-groups, we can find a distinguished
representative EF for any family F .

Proposition 2.7. Let Fm be the collection of proper subgroups of Cpm ⊂ Cpn , and
let EFm denote the usual universal space. Then

EFm ' lim
→
S(kλ(pm−1)),

the “unit sphere” in the infinite direct sum of copies of λ(pm−1).

Proof. If we restrict λ(pm−1) to any proper subgroup of Cpm , then we get the trivial
representation. Similarly, the only fixed points for the Cpm action is the origin. We
therefore conclude that

S(kλ(pm−1))Cp` =

{
S2k−1 ` < m

∅ ` ≥ m.

The maps in the colimit are the standard inclusions S2k−1 → S2k+1, and so the
colimit is contractible. �

Having built EF , we can now build a much more important space: ẼF . This
is by definition the cofiber of the canonical map EF+ → S0, in spaces. As a
consequence of the previous proposition, we can also identify a representative of
the homotopy type ẼFm for cyclic p-groups.

Proposition 2.8. A model for ẼFm is given by

lim
→
Skλ(pm−1).

Remark 2.9. In both of these propositions, the actual representations used don’t
matter. What mattered was that the fixed points of the proper subgroups become
increasingly highly connected (which means we had an increasing number of copies
of λ(p`) where ` ≥ m − 1) and that there were no fixed points for Cpm (which
means that we have no copies of λ(p`) for ` ≥ m). We could, however, have added
arbitrarily many copies of λ(pk) for k < m and still produced the same homotopy
type.

Though we will use several variants of ẼF , by far the most important is when F
is the family of all proper subgroups of G. In this case, EF+ → S0 is an equivalence

when restricted to any proper subgroup, and S0 → ẼF is an equivalence on G-fixed
points.

Definition 2.10. Let F denote the family of proper subgroups of G. If X is a
G-spectrum, then smashing X with the cofiber sequence defining ẼF yields the
isotropy separation sequence:

EF+ ∧X → X → ẼF ∧X.
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The geometric fixed points of X are the G-fixed points of ẼF ∧X:

ΦG(X) =
(
ẼF ∧X

)G
.

Both parts of this definition will be vitally useful. The isotropy separation se-
quence does exactly as the name implies: it separates X into parts that are built
from cells of the form G/G+ ∧Dn (the ẼF ∧X part) and those that are built from
induced cells (the EF+ ∧X part). Thus when we compute with this, the left most
term is often handled by induction on the order of G (since all of these cells are

induced). We can make this more precise. By the defining cofiber sequence for ẼF ,
any map

G/H+ ∧ Y → ẼF ∧X
is automatically null-homotopic (the target is contractible when restricted to H).

Additionally, the map
EF+ ∧X → X

is a kind of generalized restriction, while X → ẼF ∧X is a localization. We can
use this intuition to provide some heuristic justification for tom Diek’s theorem. If
we apply fixed points and take π∗ then we have a long exact sequence (where we
use ΦG(S0) = S0):

· · · → π1(S0)→ π0

(
(Σ∞EF+)G

)
→ π0(S0G)→ π0(S0)→ 0.

If we can understand the homotopy of (Σ∞EF+)G, then we can compute π0(S0).
However, since we are working stably, we have stable transfer maps in π0 arising
from the obvious map

G/H+ ∧X → X.

In this context, this gives us a map

π0(S0H) = π0(G/H+ ∧ Σ∞EF+)→ π0

(
(Σ∞EF+)G

)
.

Induction on G then gives the result. We remark that though it is not shown here,
all of the groups in question (with the exception of π1S

0) are actually finite rank
free abelian groups. This can also essentially be shown by downward induction on
the order of the group.

3. The Norm and the Construction of MU(C2n )

One of the most useful constructions in our main paper is that of the norm.
This is a multiplicative induction that takes SH to SG whenever H ⊂ G, and
it generalizes the Evens’ transfer in group cohomology [11]. In the homotopical
context, it was studied by Greenlees-May [14]. This section serves as a very general
overview, giving intuition and some algebraic constructions that will help the reader
understand the basic properties needed for the proof. In the main paper, a detailed
construction with the proofs of the necessary equivariant properties is provided.

3.1. General Properties of the Norm. The basic idea of the norm is simple:
induction in a category is essentially the coproduct of an object indexed by cosets.
For representations, this is simply saying that we take the direct sum of |G/H|-
copies of the representation and permute them in the obvious way, and for spectra,
we instead use the wedge. In both of these examples, the underlying object is just
the iterated coproduct, and the equivariance can be read out of the permutation
action on G/H and the H-action on the underlying object.
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Commutative algebras and E∞-ring spectra have a different coproduct: the ten-
sor or smash product. In these cases, again have a kind of induction, the norm.
The two constructions are quite similar. We will sketch the one for commutative
rings, and then state the salient properties of the one for spectra.

Proposition 3.1. There is a multiplicative functor NG
H : AlgH → AlgG which is

left adjoint to the forgetful functor iH . The composite iH ◦ NG
H is the |G/H|-fold

tensor power functor when H is a normal subgroup.

In fact, the construction is obvious. The underlying algebra for NG
H (A) is⊗

G/H

A.

To describe the equivariance, we chose a set of coset representative gi (and we chose
one of them to be the identity element). For any g ∈ G and for all i, ggi = gjh for
some j and h. This allows us to specify the action: g acts on the factor indexed by
gi by sending it to the factor indexed by gj and acting by h.

We can best understand the norm on the free commutative algebra on an H-set
X, namely the polynomial algebra on X, Z[X].

Proposition 3.2. If X is an H-set, then

NG
H (Z[X]) = Z[G×H X].

This shows immediately the desired adjunctions. It also shows the failure of the
restriction to simply be the tensor product of the underlying algebras. If H is not
normal, then the restricting of G ×H X to H is not necessarily the disjoint union
of copies of X.

It should be noted now that the norm functor actually lives as one on H-modules,
not just H-algebras. On the H-algebras, it has a particularly nice description as
a left adjoint. On the others, it’s just the tensor power with the permutation
G-action.

All of these statements are also true for commutative ring objects in H-spectra,
namely the E∞-ring spectra. Let CommG denote the category of G-equivariant
E∞ ring spectra.

Proposition 3.3. The forgetful functor iH : CommG → CommH has a left adjoint
NG
H , the underlying H-spectrum for which is the |G/H|-fold smash power when H

is normal.

The composite of the norm with the restriction as an endofunctor of CommG is
also understandable:

NG
H (X) = G/H+ ⊗X,

where we have used that E∞ G-spectra are tensored over pointed G-sets.
Just as for commutative rings, there is a prolongation of this functor to all H-

spectra. It will be essential to our proof of the Periodicity Theorem to have some
computational results about it. These all rely on the following immediate fact.

Proposition 3.4. If W is a virtual representation of H, then NG
HS

W = SInd
G
HW .

This has the following very useful consequence. If f : SW → X is an H-
equivariant map, then we have a G-equivariant map

NG
H (f) : SInd

G
HW → NG

H (X).
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In particular, if X is the restriction of a G-equivariant E∞-ring spectrum, then
we can compose with the counit of the adjunction to get a new G-equivariant map

NG
H (f) : SInd

G
HW → X.

This gives us an additional, multiplicative way to promote H-equivariant homotopy
classes to G-equivariant ones. Similarly, it is often quite simple to check that these
are non-zero by restriction. If H is normal in G, then the restriction of NG

H (f) is
essentially the |G/H|-fold power of f .

One of the most important properties of the norm is that it is well-behaved with
respect to geometric fixed points. Since S0 = NG

e S
0, we expect terrible behavior

for actual fixed points, and much of our work is spent boot-strapping up from the
geometric fixed points.

Theorem 3.5. If X is an H-equivariant spectrum, then

ΦG(NG
H (X)) ' ΦH(X).

A very coarse sketch of the argument is as follows. We know from the earlier
propositions that if X = SV and if V0 = V H , then

ΦGNG
H (SV ) ' ΦGSInd

G
HV ' SV0 ' ΦHSV .

Now if we build X out of cells, then we have a diagram for building NG
H (X) out of

cells. What is essential here is that the group G is acting on the diagram. The only
non-induced cells in the diagram are those of the form NG

H (e), where e is a cell of
X. Since geometric fixed points destroys induced cells, we are reduced to the case
of spheres.

3.2. The Spectrum MU(C2n ). A central role in our proof is played by the honest
C2-equivariant spectrum of Real bordism MUR [2, 19]. This is the bordism spec-
trum of C2-equivariant manifolds together with a Real structure on their stable
normal bundle. This is a C2-equivariant vector bundle where the fibers are com-
plex vector spaces and where on fibers, the C2-action is conjugate linear. With this
in mind, the underling spectrum is just MU together with its complex conjugation
action. If we take geometric fixed points (which corresponds heuristically to pas-
sage to fixed points for the Real manifolds), then we recover the unoriented bordism
spectrum MO. These facts are central to our understanding of the spectrum.

Numerous authors have studied MUR, computing its homotopy groups, showing
that its fixed and homotopy fixed points agree, and determining its slices [1, 17, 18].
Additionally, we know that this is a C2-equivariant E∞-ring spectrum, so the norm
will let us build spectra for any finite group G containing C2 that have similar
universal properties.

Definition 3.6. Let MU(G) denote NG
C2
MUR.

By Theorem 3.5, we know also that

ΦGMU(G) = MO.

The spectrum MU(C2n ) is also an equivariant Thom spectrum. It carries geometric

information of manifolds together with “2n−1st roots of a Real structure”. We will
not exploit this geometry here, though a better understanding would give another
proof of our Reduction theorem.
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Just as in the ordinary case, MUR carries orientations. Classically these are maps
from MU , and in the C2-equivariant case, these are maps from MUR. Many familiar
spectra with natural C2-actions have equivariant refinements, and their underlying
complex orientation also refines to a Real one. In particular, K-theory becomes
Atiyah’s Real K-theory KR, and the standard orientation of K-theory becomes a
real orientation of KR [3]. Generalizing this, ongoing work of Avarett essentially
shows that the push-forwards of the Lubin-Tate spectra En (endowed with their
Hopkins-Miller C2-action [26]) admit Real orientations [4]. This generalizes in the
following way.

Proposition 3.7. If E is a G-equivariant E∞ ring spectrum for G a finite group
containing C2, and if the restriction of E to C2 admits a Real orientation

u : MU(G) → E,

then there is a canonical equivariant E∞ map

N(u) : MU(G) → E.

Proof. This follows immediately from the adjunction

MapCommG
(MU(G), E) = MapCommC2

(MUR, E).

Our desired map is the image of the orientation. �
Thus E2n−1 admits a canonical map from MU(C2n ) that lifts the Real orientation.

3.3. Aside: Why Not E4? We pause here to explain part of the proof, namely
why we do not use E4. In fact, the detection theorem shows that the C8-homotopy
fixed points of E4 is sufficient to detect the Kervaire classes. We know from the
Nilpotence theorem that there is a horizontal vanishing line in the homotopy fixed
points spectral sequence [6], and that tells us immediately that the homotopy groups
are periodic with period some power of 2. We can approach this by running the
spectral sequence and seeing what classes on the zero line survive or by determining
what sorts of bundles are orientable for EhC8

4 (which tells us immediately which
classes must be permanent cycles).

However, even in the toy case of C4 acting on E2, it is very difficult to determine
the differentials and extensions in the homotopy fixed point spectral sequence. Fig-
ure 1 shows the E5 term of the spectral sequence (with an infinite number of copies
of π∗bo suppressed).

The spectral sequence terminates at E14, and at that point, we can see that
it is 32-periodic. What is not obvious from the E2-term is that π−2E

hC4
2 = 0.

Determining the differentials on the class denoted by a star is one of the trickier
parts of this computation. In fact, understanding the analogue of the Kervaire
differential required knowledge of some multiplicative relations in π28S

0 at 2.
The C8 case was visibly harder. While the C4 case could be nicely presented at

E5 (in that each symbol represents either Z or a finite group), after much analysis
with the slice spectral sequence, we believe that the C8 case will not have a nice
picture until E16. Additionally, we know there will be a great many differentials
before then, since there are fairly complicated patterns of differentials for C2 and
C4 acting on E4. It became clear early on that running the homotopy fixed point
spectral sequence for EC8

4 would suffer from two major drawbacks:

(1) It would be very difficult to determine and to justify all differentials and
extensions in the spectral sequence, and
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Figure 1. The E5 term of the Homotopy Fixed Point Spectral
Sequence for EhC4

2

(2) No one would ever believe it.

This led us to consider honest fixed points, rather than homotopy ones. While
this might appear to be a Faustian bargain, trading rigidity for uncomputability,
we had a major break-through with the creation of the slice spectral sequence. This
provides a filtration of equivariant homotopy theory for a finite group G, and while
the full form will not appear in this paper, this is the filtration of MU(C2n ) that
makes computations doable. We should think of this as a much more tractible
Atiyah-Hirzebruch spectral sequence. This filtration has a couple of antecedents:
Dugger built the C2-equivariant form and showed that KR has the expected filtra-
tions quotients and Hopkins-Morel, Voevodsky built an analogous filtration in the
motivic context [16, 27, 28, 29].

The slice spectral sequence computes the honest fixed points of an equivariant
spectrum (in fact, it does much more: since it is a purely equivariant filtration, it
computes the equivariant homotopy groups as a Mackey functor). For spectra like
E2, E4, and MU(C2n ), the E2-term is actually easy to compute. In Figure 2, we
show the E5-page of the slice spectral sequence for C4 acting on E2.

Comparing with Figure 1 shows some obvious advantages. It is immediate that
π−2 of the fixed points is zero, since it is zero on E5. In fact, it is zero on E2, and the
Gap Theorem below shows that it is zero for a large family of equivariant spectra.
The rigidity of equivariant homotopy theory helps us produce a large collection of
permanent cycles in the fixed points, and these give us our desired periodicity.
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Figure 2. The slice E5-term for C4 acting on E2

The obvious advantage of the slice spectral sequence necessitates proving that
the slices of E4 have the required form. This in turn required first understanding
the slices of MU(C2n ) and for various localizations thereof. It became clear that a
judicious choice of localization of MU(C2n ) would sit as an intermediary between
MU(C2n ) and E4, being sufficiently strong to detect the Kervaire classes but also
simple to work with. The reader is suggested to keep the spectrum E4 with its
natural C8-action in mind, especially in § 8, where the intuition provided by E4 is
exactly correct.

4. Mackey Functors and RO(G)-Graded Homotopy

4.1. Introduction to Mackey Functors. One of the biggest hurdles facing ho-
motopy theorists interested in equivariant algebraic topology is the more compli-
cated notion of homotopy groups. Classically, the homotopy groups of a spectrum
are simply abelian groups. In the equivariant context, the homotopy groups are
objects in a more complicated abelian category, the category of Mackey functors [9].
The complexity, and the definition of Mackey functors, arises from the larger col-
lection of “points” in the equivariant context. In addition to ∗ = G/G, we have any
coset space G/H. These G-sets are linked by a large collection of stable G-maps,
and these provide a collection of maps between the homotopy groups.

Definition 4.1. Let OG denote the category of finite G-sets.
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Definition 4.2. A Mackey functor M is a pair of functors M∗ : OopG → Ab and
M∗ : OG → Ab which send disjoint unions to direct sums, such that

M∗(X) = M∗(X) =: M(X)

for all objects X, and such that if

X
f //

g

��

Y

h

��
Z

k
// W

is a pull-back square in G-sets, then

M(X)
M∗(f) // M(Y )

M(Z)

M∗(g)

OO

M∗(k)
// M(W )

M∗(h)

OO

is commutative.

We will denote M∗(f) by f∗ and M∗(f) by f∗, and we will call f∗ a restriction
and f∗ a transfer. If f : G/H → G/G is the obvious map, then following this we will
often write TrGH for f∗ and ResHG for f∗. This terminology will be made somewhat
more clear by connecting these to standard constructions in homotopy theory.

Definition 4.3. If X is a G-spectrum, then the kth homotopy group of G is the
Mackey functor

πk(X)(B) = [B+ ∧ Sk, X]G.

When B = G/H, we will also let

πHk (X) = πk(X)(B).

This description makes the restriction maps immediate: they arise by precom-
position. For the transfer maps, we can work one of two ways.

(1) In the equivariant stable homotopy category, associated to a map Σ∞B+ →
Σ∞C+ there is a transfer map Σ∞C+ → Σ∞B+. Precomposing with these
transfer maps gives the desired transfer maps.

(2) Using the isomorphisms

[G/H+ ∧X,Y ]G ∼= [X,Y ]H ∼= [X,G/H+ ∧ Y ]G,

we can conclude that there is a natural isomorphism

[B+ ∧X,Y ] ∼= [X,B+ ∧ Y ]

for all G-sets B and for all X and Y . We can therefore consider the com-
positions in the target, rather than in the source, to get our transfer maps.

Since the object function is assumed to be additive, it suffices to understand
what happens on the orbits G/H:

πHk (X) = [G/H+ ∧ Sk, X]G = [G+ ∧H Sk, X]G = [Sk, X]H = πk(XH).

Thus the value of the homotopy group Mackey functor on G/H+ is exactly πk
of the H-fixed points of X. Moreover, if H ⊂ K ⊂ G, then we have a G-map



SKETCH OF THE KERVIARE INVARIANT PROOF 13

G/H → G/K which gives us a map in the other way on the Mackey functor
homotopy groups. This coincides with the restriction map πk(XK) → πk(XH)
induced by inclusion of fixed points. Similarly, the transfer map is essentially
“summing over the cosets”.

Since they are a diagram category of abelian groups, Mackey functors form an
abelian category. This abelian category is closely tied to the equivariant stable
homotopy category.

Proposition 4.4. Let SG,0 denote the full subcategory of SG consisting of those ob-
jects X such that πi(X) = 0 for i 6= 0. Then π0 induces an equivalence of categories

between the homotopy category of SG,0 and the category of Mackey functors.

In particular, for any Mackey functor M , we have an associated Eilenberg-
Mac Lane spectrum HM which satisfies

πk(HM) =

{
M k = 0,

0 otherwise.

We will be most concerned with HZ.
Just as with abelian groups, we can define “bilinear” pairings of two Mackey

functors M and N into a third, P . This is a natural transformation M∗⊗N∗ → P ∗:

〈−,−〉X : M(X)⊗N(X)→ P (X)

together with the condition that for any f : X → Y , the following diagram com-
mutes

M(X)⊗N(Y )
M(X)⊗f∗ //

f∗⊗N(Y )

��

M(X)⊗N(X)
〈−,−〉X // P (X)

f∗

��
M(Y )⊗N(Y )

〈−,−〉Y
// P (Y )

.

Put more sucinctly:

〈Tr(x), y〉Y = Tr(〈x,Res(y)〉X).

A Green functor is a Mackey functorM together with a bilinear pairingM⊗M →
M . Since this definition is opaque, we will unpack it slightly. A Green functor M
is one for which M(X) is a ring for all X and for which all restriction maps f∗

are ring homomorphisms. This means that for any f : X → Y , M(X) is a M(Y )-
module via f∗, and the condition for the pairing can be restated as follows: f∗ is a
map of M(Y )-modules. It is then immediate how one defines modules over a Green
functor.

The most important Green functor is the Burnside ring A. This associates to a
finite G-set X the Grothendieck group of finite G-sets over A, and restriction and
transfer are just pull-back and composition. The pullback of two G-sets over X
gives a product on this set, making A(X) into a ring for all X. It is then trivial
to check that transfers are module maps over the restrictions. It is immediate that
A(G/G) = A(G), the Burnside ring of finite G-sets. If H is a subgroup of G, then
the map (

f : X → G/H
)
7→ (f−1(eH)→ eH)

identifies A(G/H) with A(H). In particular, A(G/{e}) = Z.
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The Burnside Mackey functor plays the role for Mackey functors that Z plays for
abelian groups. In particular, every Mackey functor is a module over the Burnside
ring Mackey functor. The module structure is actually very easy to spell out:
transfers are module maps. If we look at a particular orbit G/H, then this is the
transfer, in the Burnside ring, of the element 1 ∈ A(H). By the defining property of
a pairing of Mackey functors, we then know how it acts on an element x ∈M(G/G):

[G/H] · x = TrGHRes
H
G (x).

A more general statement is also easy to form, using exactly this. A general element
in A(X) is a G-set over X: f : Y → X. The above observation shows us how to
pair A(X) and M(X):

f ⊗ x 7→ f∗f
∗(x).

Understanding this action will help us make several computations related to
equivariant homotopy groups.

We have a few distinguished ideals in the Burnside ring. First, note that if a
G-set is induced, then any G-set we get by pull-back is also induced. This says
that there is a “transfer” ideal in the Burnside ring. We can push slightly farther,
though. If F is a family of subgroups of G, then we can for an ideal in the Burnside
ring associated to F , IF as follows: begin with the ideal of A(G) generated by
[G/H] for all H ∈ F , and then close up under restrictions and transfers. Put
another way, this is the smallest ideal in A such that IF (G/H) = A(H) whenever
H ∈ F .

We shall see in § 4.3 that this Mackey functor does occur as the homotopy groups
of a relatively simple G-spectrum, namely the cofiber of various restriction maps.
If Hi runs through all proper subgroups of G, then the quotient Mackey functor
has

A/I(G/H) =

{
Z H = G,

0 otherwise.

This applies in several cases. For example, if V is a representation such that
V H 6= {0} for all proper subgroups H but V G = {0}, then π0(SV ) is this Mackey
functor.

There is another key ideal which shows up, and the associated quotient is
also named. Let I(G/H) denote the “kernel of the augmentation” A(G/H) →
A(G/{e}) = Z. This map takes a G-set X to its cardinality. Since the map is the
restriction, these kernels restrict to each other, and the condition that the transfer
is a module map ensures that they are closed under transfers, and therefore form a
Mackey functor.

Definition 4.5. The augmentation ideal is the Mackey functor ideal I given by the
kernel of the augmentation map.

The constant Mackey functor Z is the quotient A/I. The value at G/H is Z and
all restriction maps are isomorphisms.

The Mackey functor Z will play a central role in this paper, as computations
with it are especially doable (unlike, say, with a more general Mackey functor). We
will soon see how to compute the homology of any representation sphere SV with
coefficients in Z.
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4.2. RO(G)-Graded Homotopy Groups. One of the advantages of an honest
equivariant setting is the presence of a large class of invertible spheres. If W is
a virtual representation of G, then we have a sphere SW , and the assignment
W 7→ SW is monoidal where in the target we take the smash product. This gives
us a large collection of homotopy groups.

Definition 4.6. The RO(G)-graded homotopy groups of X, denoted π?(X), are
given by

[SW , X], W ∈ RO(G).

Just as before we can prolong this to a Mackey functor:

πV (X)(G/H) = [G/H+ ∧ SV , X].

This approach was pioneered by Lewis who used it to compute the RO(G)-graded
homology of projective spaces [21]. We will use this extensively to determine the

homotopy groups of our spectrum Ω̃.
The representation ring has a distinguished sub semiring: isomorphisms classes

of genuine representations. We shall call this the “positive” part of the represen-
tation ring. Similarly, any virtual representation of the form −V will be called
“negative”. Since the positive and the negative parts of the representation ring are
sub-semirings, if E is an equivariant ring spectrum, π?≥0E and π?≤0E are rings
graded on honest representations. It is often easiest to give generators and relations
for these, rather than π?E.

We can actually refine this approach slightly. The representation ring itself is a
Mackey functor, and we can extend the assignment W 7→ SW to a kind of Mackey
functor in spaces.

Definition 4.7. If W is a virtual representation of H ⊂ G, let

πW (X)(G/K) = [G/K+ ∧ (G/H+ ∧ SW ), X]G.

This will show up only obliquely in our proof. When we look at the cellular
decomposition of MU(C2n ), we will see extra classes exactly of this form. Having the
additional homotopy groups would allow a cleaner description of the homology of
MU(C2n ). Additionally, this extra structure underscores the existence of additional
restrictions and transfer maps. These transfer maps (especially related to the sign
representations of subgroups of C2n) play a large role in determining differentials
on normed classes.

4.3. Some Equivariant Homotopy Groups. Though the equivariant homotopy
groups of spheres are monstrously difficult to compute, there are several cases where
we can do so: we can compute π0(SV ) for any representation V . We begin with
two observations which give the full form. The first is essentially a restatement of
tom Deick’s computations.

Observation 4.8. The abelian group πG0 S
0 is the free abelian group generated by

[G/H] where H ranges over all subgroups of G. The element [G/H] is the image
of 1 under the transfer map

πH0 S
0 = A(H)→ A(G) = πG0 S

0.

for more general representations, we look at fixed points.



16 MICHAEL A. HILL, MICHAEL J. HOPKINS, & DOUGLAS C. RAVENEL

Observation 4.9. If H is a subgroup of G for which V H 6= {0}, then

πH
′

0 SV = 0

for any H ′ ⊂ H.

This is simply because to understand π0S
0(G/H ′), it suffices to restrict attention

to H ′-Spectra and compute the Mackey functor π0 there. Since we have a trivial
summand, the computation reduces to that of π0S

1.
The condition V H 6= {0} is clearly closed under subgroups of H and under

conjugation. Thus for any representation V , we have a family FV : the subgroups
of G with non-trivial fixed points. The previous observations show the following
result.

Proposition 4.10. As A-modules,

π0S
V ∼= A/IFV

.

There is a distinguished generator of π0S
V .

Definition 4.11. Let aV denote the inclusion of S0 = {0,∞} into SV .

This class is a kind of Euler class [13]. Multiplication by aV gives us a map
A → π0S

V , and this realizes the above isomorphism. The following proposition is

immediate from either the definition or our results about π0S
V , but it will help us

greatly in manipulating classes.

Proposition 4.12.

(1) If 1 denotes R with the trivial action, then a1 = 0.
(2) For any V and W , aV⊕W = aV · aW .
(3) If H ⊂ G, then ResHG (aV ) = aResHV .
(4) If H ⊂ G, then NG

H (aV ) = aIndGHV .

In particular, we see that it suffices to consider aV where V ranges over irre-
ducible representations (though it will be notationally simpler to consider all such
classes).

These classes are actually torsion-free in the homotopy groups of spheres. Their
image in π?HZ, which we will also denote by aV is in general not. We can spell
this out more explicitly.

Proposition 4.13. If ResHG (aV ) = 0, then |G/H| · aV = 0 in π0S
V ∧HZ.

Proof. The Hurewicz map on π0 is the reduction modulo the augmentation ideal in
the Burnside ring. In this ideal we have the obvious element [G/H]− |G/H|[G/G].

�

For cyclic 2-groups (and more generally for cyclic p-groups), these classes have
a very close connection to geometric fixed points and to the various families of
subgroups one can consider.

Theorem 4.14. For any X, we have

π?(ẼFm ∧X) = a−1
λ(pm−1)π?(X).
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Proof. Since ẼFm is the cofiber of the natural map EFm+ → S0, we can identify
it with

lim
→
Skλ(pm−1),

where the maps in the colimit are the suspensions of aλ(pm−1). The result follows.
�

Corollary 4.15. The homotopy groups of ΦG(X) are given by the integer graded
part of a−1

σ π?(X).

As was remarked above, the space EFm is actually just a homotopy type. We
could use any family of representations that had this property. In particular,
we could add any collection of representations with a smaller stabilizer subgroup
(named those with a smaller power of λ).

Corollary 4.16. If we invert aλ(pm−1) then we invert aλ(pk) for all k ≤ m− 1.

Corollary 4.17. Inverting aσ inverts aV for any representation V with trivial fixed
points.

This will make computations in the slice tower much simpler. In particular,
we can use this to greatly reduce the complexity of the computations involving
differentials in the slice tower.

5. The Slice Tower and the Slices of MU(C2n )

5.1. The Homology of MU(C2n ). We begin with the following C2-equivariant
generalization of the classical splitting of MU ∧MU as MU -module spectra.

Proposition 5.1. As MUR-modules, we have a splitting

MUR ∧MUR 'MUR ∧
∨
p

S
|p|
2 ρ2 ,

where p ranges over all monic monomials in MU∗.

Since it will show up a very great deal, we give names to particular wedges of
representation spheres.

Definition 5.2. Let

W =
∨
p

S
|p|
2 ρ2 ,

where p ranges over all monic monomials in MU∗.

The previous proposition gives us two immediate corollaries. First, it allows us
to conclude the RO(G)-graded homology of MUR.

Corollary 5.3. We have a splitting

HZ ∧MUR ' HZ ∧W.
This can actually be shown geometrically using a Schubert cell decomposition

of the Grassman manifolds which occur as the spaces in the MUR-spectrum. This
splitting underscores also the importance of the regular representation sphere for
MUR, and in our construction of the slice tower, we will capitalize on this.

The second corollary allows us to increase the size of the group.
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Corollary 5.4. We have a splitting of MU(C2n )-module spectra

MU(C2n ) ∧MU(C2n ) 'MU(C2n ) ∧NC2n

C2
W.

Our understanding of the norm of a wedge allows us to reformulate this last part
into a more explicit form.

Theorem 5.5. We have an equivariant decomposition

NC2n

C2
W =

∨
p∈I

C2n/Hp+ ∧ S
|p|
|Hp|

ρHp ,

where I is the orbits of monomials in π
{e}
∗ MU(C2n ) ⊗ Z/2 and where Hp is the

stabilizer subgroup of p.

Remark 5.6. Since we are working modulo 2, it is immediate that C2 ⊂ Hp for
all p. Thus we never have free summands in this wedge.

This in particular gives us a splitting of HZ ∧MU(C2n ), and we see that here
the important cells are those of the form

C2n+1/H+ ∧ SkρH

for various non-trivial subgroups H. This slice tower capitalizes on this. By judi-
ciously choosing an equivariant filtration, we can ensure that the associated graded
of MU(C2n ) is exactly HZ ∧MU(C2n ). As we shall see in the next section, this is
very computable.

5.2. Slice Filtration. A key step in our solution is the production of a new equi-
variant filtration, the slice filtration. This is a refinement of the non-equivariant
Postnikov tower, but it groups the homotopy according the regular representation
cells. In fact, there is a choice here of “slice” cells, and different choices produce
different slice spectral sequences. The choice we use plays nicely with the spec-
tra MU(C2n ), allowing us to identify the slice associated graded and to use it to
compute equivariant homotopy groups.

Definition 5.7. Any generalized representation sphere of the form G+∧H SkρH−ε,
where ε is 0 or 1, is a slice cell. The dimension of the slice cell G+ ∧H SkρH−ε is
k|H| − ε.

The inclusion of the factor ε seems initially somewhat confusing. This is ac-
tually also dictated by the Schubert cell decomposition of MU(C2n ). We know
that in homology we see cells of the desired form (without any ε factor), but this
means that they arise as cofibers of maps from a single desuspension. Having these
desuspensions allows us to also control these maps, and not just the cells.

Associated to these collections of cells, we can build localizing subcategories.

Definition 5.8. Let Tn denote the full subcategory of G-spectra built by closing the
category of all slice cells of dimension greater than n under colimits and extensions.

In other words, we consider all spectra we can build out of the slice cells of
dimension at least n under iterated colimits and under extensions. We do not allow
require (nor do we want to allow) arbitrary limits or fibers. This is a big difference
between our slice filtration and the motivic one due to Voevodsky: the motivic slice
filtration is a filtration of triangulated subcategories whereas ours in not.



SKETCH OF THE KERVIARE INVARIANT PROOF 19

Definition 5.9. The nth slice truncation functor Pn is the Dror-nullification func-
tor associated to the subcategory Tn.

This is most easy described via its universal properties. We have Pn and a
natural transformation 1 → Pn such that the space of maps Map(W,Pn(X)) is
equivariantly contractible for any slice cell W of dimension at least n and such that
Pn(X) is initial amongst spectra with this property [12].

It is easy to check that G+ ∧H SkρH−ε is (k − ε)-connected if k ≥ 0 and (k|H|)-
connected if k < 0. This give us a coarse lower bound on the connectivity of any
element in Tn: n/|G| − 1. A general property of nullification then ensures the
following fact (which for easy, we state only for n > 0).

Proposition 5.10. The map X → Pn(X) is (n/|G| − 1)-connected.

Dually, it is easy to show that for all H, G+ ∧H Sn ∈ Tn. These are exactly
the cells which are killed to build the equivariant Postnikov tower, we conclude the
following.

Proposition 5.11. For all n and for all k > n,

πk(Pn(X)) = 0.

Definition 5.12. The slice tower of X is the iterated nullification tower

...

��
Pn(X)

��
X

DD


















;;wwwwwwwwww
//

""FFFFFFFFFFF Pn−1(X)

��
...

The slice spectral sequence is the spectral sequence associated to this filtration.

Proposition 5.10 ensures that the map from X to the limit of the slice tower is
a weak equivalence. Proposition 5.11 ensures that the colimit of the slice tower is
contractible. Thus the slice spectral sequence has good convergence properties.

The E1-term of this spectral sequence is given by the Mackey functor homotopy
groups of the fibers Pn(X)→ Pn−1(X). These fibers are the slices of X.

Definition 5.13. The n-slice of X is the homotopy fiber Pn(X)→ Pn−1(X).

In general, determining the slices of X is regrettably difficult. There are two
cases where we can do so.

Proposition 5.14. If T is a slice cell, then T ∧HZ is a dim(T )-slice.

This is an essentially immediately computation of equivariant homology groups,
and we postpone it until a later section.
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Corollary 5.15. If again

W =
∨
p

S
|p|
2 ρ2 ,

then

W ∧HZ and
(
NC2n

C2
W
)
∧HZ

are wedges of slices.

Proposition 5.16. The zero slice of S0 is HZ.

Proof. We prove this for cyclic p-groups, leaving the full case to the larger paper.
The proof is by induction on the order of the group. We know that the slice tower is
a refinement of the Postnikov tower. In particular, for the zero-slice, this means two
things. First, the zero-slice of S0 is of the form HM for some M and second, the
underlying spectrum must be HZ. In particular, though transfers of the element
1 ∈M(G/{e}) might be killed, nothing that restricts to it can be.

We will show by induction on the group that any element in the augmentation
ideal I(G/G) can be realized by a map from some wedge of slice cells. The case for
G/H is handled identically. It suffices, by induction for transfer reasons, to then
only consider elements in the augmentation ideal that are not in the image of the
transfer from any subgroup. For a general group, these are generated by classes
[G/H] − |G/H| for H a maximal proper subgroup of G. In the case of a cyclic
group of prime power order, these are especially simple: there is only one such H
that is also a cyclic group of prime power order.

Since the restriction of α = [Cpn/Cpn−1 ]− p to Cpn−1 is zero, we know that the
composition

Cpn+ ∧Cpn−1 S
0 → S0 α−→ HA

is null-homotopic. Our understanding of how to build the a cell structure for Sρ−1

shows that the 1-cells are attached by exactly the map

Cpn+ ∧Cpn−1 S
0 → S0,

and so α extends over the 1-skeleton. Since HA is an Eilenberg-Mac Lane spectrum,
we conclude that α extends over Sρ−1. �

A similar proof actually shows that the category of zero slices is the category of
Mackey functors for which all restriction maps are monomorphisms. This is true
for an arbitrary finite group.

Proposition 5.17. Let V be a representation, and let FV be the family of subgroups
H of G such that V H 6= 0. Then for any Mackey functor M we have

[SV , HM ] = {x ∈M(G/G)|ResHG (x) = 0, ∀H ∈ FV }.
Proof. Since HM is an Eilenberg-Mac Lane spectrum, we know

[SV , HM ] = [Hπ0S
V , HM ] = HomA(π0S

V ,M).

The result now follows from our earlier analysis of π0S
V . �

For our purposes, the most important example where we can determine the slice
associated graded is MU(C2n ).
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Theorem 5.18 (the Slice Theorem). There is an equivariant filtration of MU(C2n )

(the slice filtration) such that the associated graded is

HZ ∧
∨
p∈I

C2n/Hp+ ∧ S
|i|
|Hp|

ρHp ,

where I is the orbits of monomials in π
{e}
∗ MU(C2n ) ⊗ Z/2 and where Hp is the

stabilizer subgroup of p.

Rather than give a complete proof, we will sketch the argument. We begin with
a statement about the underlying homotopy of MU(C2n ).

Proposition 5.19. We can find generators of π
{e}
∗ MU(C2n ) such that as an equi-

variant algebra

π
{e}
∗ MU(C2n ) = Z[r1, . . . , γ

2n−1−1r1, r2, . . . ],

where γ, the generator of C2n , acts in the obvious way, and where γ2n−1

ri = (−1)iri.
The degree of ri is 2i.

For n = 1, these can be chosen to be the usual classes. For n = 2, we can choose
these to (up to decomposables) be the usual classes ti.

These underlying homotopy classes are actually the restriction of C2-equivariant
maps from non-trivial representation spheres, and from this we get a good descrip-
tion of equivariant generators in general.

Proposition 5.20. There are C2-equivariant maps

r̄i : S
iρ2 →MU(C2n )

such that the underlying map is ri.

When we need to remember the ambient group, we will further adorn r̄i with a
second subscript: r̄i,n is r̄i for C2n and MU(C2n ). The left unit allows us to find
r̄i,k in πiρ2MU(C2n ) for all k ≤ n.

Applying the C2n -action then gives us classes γj r̄i.

Definition 5.21. Let S[r̄i] denote the free A∞-ring spectrum on Siρ2 .

Thus
S[r̄i] =

∨
j≥0

Sijρ2 ,

and a map of associative algebras S[r̄i] → X is given by an element πiρ2X. As
the name implies, there is for each i a distinguished map S[r̄i] → MU(C2n ). Since
MU(C2n ) is a commutative ring spectrum, we can smash all of these algebras to-
gether and get a map of associative algebras∧

k≥1

S[r̄k]→MU(C2n ).

The underlying map for this exactly picks out the subalgebra generated by the
generators rk in homotopy.

If we apply the norm, followed by the canonical map NC2n

C2
MU(C2n ) →MU(C2n ),

then we get a map of associative algebras

N(
∧
k≥1

S[r̄k])→MU(C2n ).
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Let R denote the associative algebra N(
∧
k≥1 S[r̄k].

Since S[r̄k] is a wedge of equivariant spheres, we can easily understand

R =
∧
k≥1

N(S[r̄k]).

Proposition 5.22. The homology of the underlying spectrum for R is

Z[r1, . . . , γ
2n−1−1r1, r2, . . . ],

where ri is the fundamental class of the associated sphere, and where |ri| = 2i, and
the underlying map on homotopy

π
{e}
∗ R→ π

{e}
∗ MU(C2n )

is surjective, sending fundamental classes to the identically named elements.

In the group action, γ2n−1

acts as (−1)i on ri. In fact, this sign action is recorded
in the equivariant homotopy by the fact that the conjugation map Sρ2 → Sρ2 had
degree −1. We also know that every class in the norm of our wedge has a stabilizer
group containing C2. Putting these two facts together leads us to consider orbits of
monomials in the underlying homotopy of MU(C2n ). Associated to each orbit, we
can attach the stabilizer subgroup modulo 2, stripping out the pesky sign problem.
For easy of notation, if p is a monomial, let Hp denote this stabilizer subgroup.

This gives us exactly the equivariant homotopy type of R: it is a wedge of
induced spheres of the form

C2n+ ∧Hp
S
|p|
|Hp|

ρHp ,

where p ranges over a set of representatives for the orbits of monomials in the
underlying homotopy of MU(C2n ).

The reader will at this point no doubt recognize that the claim of the necessary
theorem is that MU(C2n ) has an equivariant filtration for which the associated
graded is HZ∧R. We can achieve this by first recognizing that since R is essentially
a polynomial algebra in spectra (though we stress that the variables do not commute
with themselves in the sense that there are no power operations beyond the pth

power), we have a filtration by degree, with the “degree at least n” bimodule
being denoted Mn. Using the map of associative algebras R→MU(C2n ), we get a
decreasing filtration of MU(C2n ) = MU(C2n ) ∧R R by considering MU(C2n ) ∧RMn.
The associated graded for this filtration is simply(

MU(C2n ) ∧R S0
)
∧R.

This gives rise to by far the most difficult theorem in our proof: the Reduction
Theorem. Since the proof is somewhat technical, we will not reproduce it here.

Theorem 5.23 (the Reduction Theorem). We have an equivariant equivalence

MU(C2n ) ∧R S0 ' HZ.

In fact, the map MU(C2n ) ∧R S0 → HZ realizing this equivalence is the 0th
Postnikov section of MU(C2n ). We should interpret the Reduction Theorem as
an equivariant analogue of the fact that MU modulo all of its generators in non-
zero degree is HZ. As a consequence of the Reduction Theorem, we also see that
MU(C2n ) ∧R S0 inherits an algebra structure. This is not immediate, since R is not
commutative.



SKETCH OF THE KERVIARE INVARIANT PROOF 23

The astute reader will notice that at no point in the argument up to this point
have we used the slice filtration. It is precisely in our proof of the reduction theorem
that having the full slice story becomes most useful.

With the Reduction Theorem, the description of the associated graded ofMU(C2n )

is complete. Before focusing on the specific computations, we give a brief corollary.

Corollary 5.24. For any k, there is an equivariant filtration of Σkρ2nMU(C2n )

such that the associated graded is

HZ ∧
∨
p∈I

C2n/Hp+ ∧ S
|i|+k2n

|Hp|
ρHp ,

where again I is the orbits of monomials in π
{e}
∗ MU(C2n ) ⊗ Z/2 and where Hp is

the stabilizer subgroup of p.

This is immediate from smashing the filtration of MU(C2n ) with Skρ2n . Here we
have used that the restriction of the regular representation of C2n to any subgroup
is a sum of copies of the regular representation. In particular, we see that the form
of the summands,

HZ ∧ (C2n+ ∧C
2k
Sjρ2k ),

is unchanged!

6. The Homology of a Point, and the Gap Theorem

For cyclic groups of prime-power order and for a virtual representation spheres
SV , it is to compute the Mackey functor homotopy group π∗(S

V ∧HZ). Using the

linear ordering of the subgroups, we can build a triangularization of SV which gives
us an especially simple chain complex.

For ease of exposition, we will restrict attention to cyclic 2-groups. Everything
said here applies equally well to cyclic p-groups. Our exposition is greatly stream-
lined by the following obvious fact: the subgroups of a cyclic p-group are linearly
ordered.

The analysis begins with a decomposition of SV into cells for V an honest rep-
resentation. For this, we can actually understand this in spaces. This gives us, by
equivariant Spanier-Whitehead duality, a cellular decomposition of S−V , and then
by smashing, we get one for any virtual representation. This translates into our
chain complexes by simply requiring us to form the associated cochain complex for
S−V and then to tensor things together for a more general case. We remark that
for honest representations, this chain complex is much smaller than the one you
get by decomposing V into irreducible representations and tensoring the associated
complexes together.

For the rest of this section, let V be a fixed representation of C2n .

6.1. The Bredon Homology of SV . We can decompose V into a direct sum of
representations with a fixed stabilizer subgroup:

V =

n⊕
k=0

Vk,

where Vk is a sum of representations of the form λ(j) with the 2-adic valuation of
j equal to n− k. Thus Vi is stabilized by C2n−i , and conversely, the fixed points of
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C2n−i is

V C2n−i =

i⊕
k=0

Vk.

This actually immediately lets us built a cellular decomposition. Since any rep-
resentation spheres Sλ(i) and Sλ(i′) are equivalent if i and i′ have the same 2-adic
valuation, we can simple consider

V = m0 ⊕m1σ ⊕m2λ(2n−2)⊕ · · · ⊕mnλ.

This particular ordered decomposition of V into irreducible representations with
shrinking stabilizer groups gives our cells. For ease on the reader’s eyes, let

Mk = dimV C2n−k = m0 +m1 + 2m2 + · · ·+ 2mk.

Proposition 6.1. There is a cell decomposition of SV of the form

Sm0 ∪
m1⋃
j1=1

C2n+ ∧C2n−1 e
M0+j1 ∪ · · · ∪

2mn⋃
jn=1

C2n+ ∧ eMn−1+jn .

Moreover, the subcomplexes

Sm0 ∪
k⋃

j1=1

C2n+ ∧C2n−1 e
m0+j1

and

Sm0 ∪
m1⋃
j1=1

C2n+ ∧C2n−1 e
m0+j1 ∪ · · · ∪

2⋃̀
jk=1

C2n+ ∧C
2n−k

eMk−1+jk .

are the representation spheres

Sm0+kσ and Sm0+m1σ+···+`λ(2n−k)

respectively.

The second half essentially tells us how to build these. We attach cells with
increasingly smaller stabilizer groups to the representation spheres we have already
built. We can therefore understand the cell structure by understanding how to

build SV⊕λ(2k) with SV as the co-dimension 2-skeleton for representations V with
stabilizer containing C2k .

This is easiest to visualize with a picture. In Figure 3, the z-axis represents the
representation V , while the (x, y)-plane (herein depicted as λ(2n−2)) is λ(2k). The
white dot in the center is the origin, and the shading on the semi-planes indicates
the contribution of the group action on the vertical component (in this case, flipping
back and forth).

We have a natural cell structure for Sλ(2k):

S0 ∪ C2n+ ∧C
2n−k

e1 ∪ C2n+ ∧C
2n−k

e2.

We can easily visualize this cell structure on the Riemann sphere. The 0-cells are
the origin and the point at infinity, the 1-cells are the great semi-circles through
the zero cells and the 2kth-roots of unity, and the 2-cells interpolate between these.
This is depicted in Figure 4 for k = 3.
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Figure 3. Adding New Cells

Figure 4.

To build our cell structure on SV⊕λ(2k), we smash this cell structure with the
spheres already built. Since the stabilizer subgroup of V contains C2n−k , we know
that

SV ∧
(
C2n+ ∧C

2n−k
e1
)

= C2n+ ∧C
2n−k

SV ∧ e1 = C2n+ ∧C
2n−k

e1+dimV ,

Thus we can ignore the codimension 1-skeleton of SV after smashing with C2n/C2n−k ,

and we produce the desired cell structure on SV⊕λ(2k).
This gives us very simple chain complexes to compute the Bredon homology.

Definition 6.2. If V = m0 +m1σ+m2λ(2n−2) + · · ·+mnλ, then let C(V ) denote
the chain complex

C(V )j =

{
Z[C2n/C2n−k ] Mk−1 < j ≤Mk

0 otherwise,

where the differentials are those equivariant maps such that the restriction of the
complex to those cells of dimension at most Mk−1 + 2j is quasi-isomorphic to the
chains on SMk−1+2j.

The complex C(V ) is the equivariant cellular chain complex. If we take fixed
points for various subgroups and take homology, then we recover the Bredon ho-
mology groups, by definition.

Proposition 6.3. As Mackey functors,

Hn(SV )(G/H) := πn(SV ∧HZ)(G/H) = Hn(C(V )H).

We can rewrite the final step as saying that homotopy classes of equivariant
maps from the chain complex that is Z[G/H] in dimension n to C(V ) is the same
as the homology of the fixed points of the complex.
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The most important cases are regular representations spheres, and we spell out
several cases for the reader’s convenience. From these, the general pattern easily
follows.

Example 6.4. For C4, we have

C(ρ4) = Z[C4/C4] Z[C4/C2]
∇oo Z[C4]

1−γoo Z[C4]
1+γoo ,

where ∇ is the “fold” map ∇ : Z2 → Z. We also have

C(2ρ4) = Z Z2∇oo Z2
1−γoo Z4

1+γoo Z4
1−γoo Z4Troo Z4

1−γoo ,

where we have abreviated Z[C4/H] to Z(4/|H|) and where Tr = (1 + γ + γ2 + γ3).

There is an essential fact that underlies all of what follows. If V contains σ, then
C(V ) always begins

Z[C2n/C2n ]
∇←− Z[C2n/C2n−1 ].

This quite simple result is the basis for the gap theorem!

6.2. The Bredon Homology of S−V . Since S−V is the equivariant Spanier-
Whitehead dual of SV , the Bredon chains are the dual to the chains on SV :

C(−V ) := Hom(C(V ),Z),

where Z has the trivial action. The two most important examples are C(ρ2n) and
C(2ρ2n). We again illustrate these for C4.

Example 6.5. We have

C(−ρ4) = Z[C4/C4]→ Z[C4/C2]→ Z[C4]→ Z[C4],

where now the first map is the diagonal Z→ Z2, and the remaining ones are as in
the positive case.

We also have

C(−2ρ4) =

Z[C4/C4]→ Z[C4/C2]→ Z[C4/C2]→ Z[C4]→ Z[C4]→ Z[C4]→ Z[C4],

and again the only change is that the first map is the diagonal map.

Proposition 6.6. If V contains a copy of σ, then the two non-zero terms of largest
degree in C(−V ) are

Z[C2n/C2n ]
∆−→ Z[C2n/C2n−1 ],

where ∆ is the diagonal map Z→ Z2.

6.3. The Gap Theorem. We begin with a few simple homotopy groups.

Lemma 6.7. For any k > 0 and any j, we have

π−3,−2,−1

(
HZ ∧ C2n+ ∧C

2k
Sjρ2k

)
= 0.

Proof. By the natural adjunctions between induction and restriction, it will suffice
to show that for any j

π−3,−2,−1HZ ∧ Sjρ2n = 0.

If j ≥ 0, then elementary connectivity arguments show this is so. For j < −3, the
(−j)-connectivity of S−jρ2n produces the desired co-connectivity. For j between
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−3 and −1 inclusive, Proposition 6.6 shows that in dimensions j and j−1, C(jρ2n)
looks like

Z[C2n/C2n ]
∆−→ Z[C2n/C2n−1 ].

Upon passage to C2n fixed points, this complex becomes

Z 1−→ Z,

and we conclude that in degrees j and j−1, the homology is 0. The only remaining
case is j = −1 and degree −3. It is easy to check that in this case, the map from
degree −3 to −4 is injective, resulting in a trivial homology group in degree −3. �

As an immediate consequence of this and the Slice Theorem, we learn a quite
surprising fact about the homotopy of the fixed points of MU(C2n ).

Theorem 6.8. For any k,

π−3,−2,−1Σkρ2nMU(C2n ) = 0.

Proof. For k ≥ 0, this is immediate, since MU(C2n ) is (−1)-connected, and Skρ2n

is k-connected. For k < 0, we use Corollary 5.24. Associated to this filtration,
we have a spectral sequence computing equivariant homotopy. The E1-term is the
equivariant homotopy of terms of the form

HZ ∧ C2n+ ∧C2m
Sjρ2m ,

where m > 0. By Lemma 6.7, π−3,−2,−1 of this is zero. Since π−2 of every term in
the associated graded is zero, we conclude the same is true for Σkρ2nMU(C2n ). �

Theorem 6.9 (the Gap Theorem). If ∆̄ : Skρ2n → MU(C2n ) is any equivariant
homotopy class, then

π−3,−2,−1∆̄−1MU(C2n ) = 0.

Proof. Inverting ∆̄ involves forming a directed colimit

· · · →MU(C2n )
∆̄−→ Σ−kρ2nMU(C2n )

∆̄−→ . . . .

Spheres are still compact objects, and so we conclude

π−3,−2,−1∆̄−1MU(C2n ) = lim
→
π−3,−2,−1Σmkρ2nMU(C2n ) = lim

→
0 = 0. �

Thus in a huge family of equivariantly periodic spectra (these with period kρ2n),
we always have a gap in the homotopy of the fixed points. This is actually quite
shocking and strong. With very little work, we have produced one of the key steps
in our theorem: the Kervaire classes are eventually detected in the zero group.

Remark 6.10. There are two known antecedents to this result. Atiyah showed
that the fixed points of KR are KO, and the standard computation of the homo-
topy of KO has π−3,−2,−1KO = 0. Similarly, unpublished work of Mahowald-

Rezk and Goerss-Henn show that in the homotopy of EO2(C4) = EC4
2 , we have

π−3,−2,−1EO2(C4) = 0. Our result shows that these vanishing results are actually
quite generic.
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7. Some Cohomology Operations and Slice Differentials

The Periodicity and Homotopy Fixed Points Theorems rely on a simple coho-
mological computation. We construct several elements in the equivariant Steenrod
algebra in BP (n)-modules and we show that these act non-trivially on the pow-
ers of u2σ. Tying these to N(r̄i) for various i produces for us, by definition, slice
differentials.

7.1. Naming Elements in Bredon Homology. One of the most useful features
of this approach is that we can easily understand the full ring structure of π?HZ
(at least the positive part). In particular, we can explicitly name every element,
and this allows us to better understand how elements in the slice spectral sequence
interact. We saw that the earlier computations that if V is an oriented representa-
tion (that is, the generator acts via a degree 1 map on the underlying sphere), then
we have a distinguished map Sdim(V ) → SV ∧HZ.

Definition 7.1. Let uV denote the orientation map Sdim(V ) → SV ∧HZ.

Just as with aV , these satisfy a number of very useful properties.

Proposition 7.2.

(1) If 1 is the trivial representation, then u1 = 1.
(2) If V and W are representation, then uV⊕W = uV · uW .
(3) If H ⊂ G, then NG

H (uV ) · udim(V )IndGH1 = uIndGHV .

The only non-obvious result is the third. This follows immediately from writing
out the norm of the source.

This lets us name every element in our chain complexes. We give the generic
example for C8 and various copies of the regular representation thereof.

Z

k

Z2. . .Z2

2k

Z4. . .Z4

4k

Z8. . .Z8

8k

akρ̄8ak(λ+λ(2)+λ(3))ukσak(λ+λ(3))ukλ(2)ukσuk(λ+λ(3))ukλ(2)ukσ

This method of naming actually also follows quite quickly from our choice of
cell-structure. We restrict attention to orientable V for now and will indicate the
simple change for non-orientable V at the end. Since the codimension 2-skeleton of
our cell-structure is another representation sphere (and one for which the stabilizer
subgroup is larger), it will suffice to understand how to name the elements of SV+λ

relative to those of SV . This follows from the following.

Observation 7.3. The inclusion SV → SV+λ is aλ.

Thus for ∗ ≤ dim(V ), multiplication by aλ gives an isomorphism

π∗HZ ∧ SV (G/H)→ π∗HZ ∧ SV+λ(G/H).

It is also immediate from the chain complexes that the dim(V ) + 1-dimensional
homology vanishes. Finally, by definition, the dim(V + λ)-homology is generated
by uV+λ. Downward induction on the number of summands then names generators
for all homology groups.
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So what happens in the non-orientable case? The names here change very
slightly. If V is non-orientable, then V contains an odd number of copies of σ,
and V − σ is orientable. We name the elements of the homology of SV−σ in the
usual way, and composing with aσ produces the generators of the homology of SV .
In particular, we see that if V is not orientable, then all homology groups of SV

are 2-torsion.
Though not directly needed, we also list some multiplicative relations in the Bre-

don homology of a point. These will result is drastic simplifications upon inverting
aσ, which in turn will make our computation of several cohomology operations
tractable.

Proposition 7.4. The elements uλ(2k) are subject to the following relations

2jaλ(2i)uλ(2i+j) = aλ(2i+j)uλ(2i),

where here we have used that λ(2n−1) = 2σ.

It is then immediate that for all k < n− 1,

a3
σuλ(2k) = 0,

since a2
σuλ(2k) is divisible by 2.

Though we have not described the other equivariant homology groups, it is not
difficult to check that aσ also acts nilpotently on almost all classes there. More
specifically, we have the following.

Proposition 7.5. As rings,

a−1
σ π?HZ = Z/2[a±1

σ , a±1
λ(2n−2), . . . , a

±1
λ , u2σ],

and as spectra, ΦGHZ = HZ[b], where b = u2σ/a2σ is in degree 2.

7.2. Relative Cohomology Operations. For sake of argument, we assume that
BP (n) is an E∞ ring spectrum. If this is not the case, then we replace it with
MU(C2n ). While in general there are many more classes that will appear for
MU(C2n ), we will restrict attention to geometric fixed points (for which things
are better behaved). We begin by analyzing the spectrum HZ ∧BP (n) HZ. This is
an equivariant E∞ ring spectrum whose homotopy is the ring of cooperations for
homology in the category of BP (n)-modules.

In general, the homotopy of this will be very difficult to compute. However,
we can identify particular elements which we can easily check to be non-zero by
mapping to the geometric fixed points. To begin, we quickly compute the geometric
fixed points of this spectrum.

Proposition 7.6. As commutative ring spectra,

ΦG(HZ ∧BP (n) HZ) = HF2[b′] ∧HF2
HF2[b] = HF2[b, b′],

where as before b = b′ = u2σ/a2σ is an element in degree 2.

Before continuing, we make a very brief digression into names of elements. Just
as classically, the classes r̄i,n do not occur in BP (n) unless i is of the form 2j − 1.

We therefore give new BP (n)-names to simplify the writing. Similarly, since in this
section n is held fixed, we suppress it from the notation.

Definition 7.7. Let v̄i denote the element r̄2i−1,n.
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Even using MU(C2n ), these are the elements that play a key role (since we always

have a splitting in equivariant A∞-algebras that splits off BP (n)).
We define our homology classes inductively using the cofiber sequences

(G · v̄i)BP (n) → BP (n) → BP (n)/(G · v̄i).
A key observation that makes many of the computations here work is that from

the perspective of geometric fixed points, there is no difference between (G·v̄i)BP (n)

and N(v̄i)BP
(n) = ΣiρGBP (n), and the map to BP (n) is multiplication by N(v̄i).

This is because all other elements are carried by induced spheres and are therefore
wiped out by the geometric fixed points construction.

If we smash this over BP (n) with HZ, then we again get a cofiber sequence:

(G · v̄i)BP (n) ∧BP (n) HZ→ BP (n) ∧BP (n) HZ→ BP (n)/(G · v̄i) ∧BP (n) HZ,
and from this we can identify various homotopy elements. Let N(v̄i) denote the

homotopy class S(2i−1)ρG → (G · v̄i)BP (n) ∧BP (n) HZ induced by the Thom reduc-
tion map BP (n) → HZ (which is the unit map in the category of BP (n)-algebras).
A simple check on geometric fixed points shows that this map is not null. However,
when we compose with the map to BP (n) ∧BP (n) HZ, then this map becomes null.

Definition 7.8. Let τi : S
(2i−1)ρG+1 → BP (n)/(G·v̄i)∧BP (n)HZ denote a preimage

of N(v̄i) in the long exact sequence in homotopy induced by the cofiber sequence.

Let τi : S
(2i−1)ρG+1 → HZ∧BP (n)HZ also denote the image of τi into the colimit.

Obviously there is substantial ambiguity in this definition. However, for our
purposes we need most understand what happens modulo the elements annihilated
by aσ. For this, the following proposition shows there is not only is there no
ambiguity but also the classes are non-zero.

Proposition 7.9. The image of a(2i−1)ρ̄Gτi in π∗Φ
G(HZ ∧BP (n) HZ) is b′2

i

.

Proof. This is immediate from applying geometric fixed points to the defining
cofiber sequences. �

In fact, this proposition is essentially equivalent to the Reduction theorem. The
key step is that we can get HZ from BP (n) by killing classes, and the argument
relies on a computation. This computation is at its heart equivalent to knowing
that the classes τi map to non-trivial classes in HZ ∧BP (n) HZ.

Since this is a map of rings, we note that there are non-trivial multiplicative
extensions among the classes τi.

Corollary 7.10. Modulo elements killed by inverting aσ, we have a relation

τ2
i = aρ̄Gτi+1.

For computational reasons, it is convenient to extend this result very slightly
and kill 2 in the homotopy. Let τ0 : S1 → HZ/2 ∧BP (n) HZ/2 denote the mod 2
Bockstein.

Proposition 7.11. The image of τ0 in π∗Φ
G(HZ/2 ∧BP (n) HZ/2) = F2[

√
b,
√
b′]

is
√
b′.

Corollary 7.12. for all i ≥ 0, we have

τ2
i = aρ̄Gτi+1.
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Remark 7.13. This result has a number of antecedents. In motivic homotopy the-
ory, we can also form HF2 ∧BP HF2. Work of Voevodsky shows that the homotopy
groups of this are π?HF2[τ0, . . . ]/τ

2
i = ρτi+1, where ρ is a distinguished class in the

motivic homotopy of a point.

The computations in this section have been in homology. We turn now to co-
homology to produce our desired differentials. Let Qi denote the class in (BP (n)-
relative) cohomology dual to τi. This is an element in π?FBP (n)(HZ/2, HZ/2), the
ring of operations on mod 2-cohomology in the category of BP (n)-modules. Since
the dual has a product, this has a coproduct, and the multiplicative relations on
the classes τi gives us a coproduct relations on the classes Qi.

Proposition 7.14. The class aρ̄GQi−1 ⊗Qi−1 occurs in the coproduct of Qi with
non-zero coefficient.

These classes are not a priori in the equivariant Steenrod algebra. These are
classes in the homotopy of the spectrum of BP (n)-module endomorphisms of HZ/2.
However, since the slice filtration is a filtration of BP (n)-modules, this is sufficient
for our purposes. In fact, though not needed, it is not difficult to show for naturality
reasons that these map to non-trivial elements in the equivariant Steenrod algebra.

Theorem 7.15. Modulo classes annihilated by inverting aσ,

Qi(u
2i

σ ) = a2i−1
ρ̄G a2i

σ .

Proof. The equivariant chain complexes show that Q0(uσ) = aσ. The result now
follows by induction. �

Theorem 7.16. In the slice spectral sequence for BP (n), we have differentials

d(u2i

2σ) = a2i+1−1
ρ̄G a2i+1

σ N(v̄i).

Proof. This is immediate from the definition of the classes τi: τi detects multi-
plication by N(v̄i). The previous theorem them gives this result modulo classes
annihilated by aσ. A simple computation shows that in this range of possible
targets, multiplication by aσ is faithful. �

As we shall see, this theorem is the essential result needed for the periodicity
and homotopy fixed points theorems.

7.3. Interlude KR and KO. To ground the previous differentials, we present the
example of the C2-fixed points of KR. This computation was originally done by
Dugger with his C2-slice spectral sequence [10]. We reproduce it with our language
and machinery. The E2-page of the spectral sequence is shown in Figure 5. We
have included the names of several classes to help the reader. In particular, classes
that occur on the zero line are powers of v̄1 times complementary powers of u2σ.
As always, boxes are copies of Z while black dots are copies of Z/2.

The class v̄1 is an actual equivariant homotopy class, so we know it is a permanent
cycle in the slice spectral sequence. Similarly, aσ is in the Hurewicz image. The
only class unaccounted for is u2σ, and Theorem 7.16 shows that it supports a slice
d3:

d3(u2σ) = a3
σ v̄1.
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Figure 5. The Slice E2-term for KR

This differential takes place in an equivariant stem (connecting the 2 − 2σ and
the 1 − 2σ stems). However, since this is a spectral sequence of algebras, we see
Z-graded versions of this:

d3(v̄2
1u2σ) = v̄2

1d3(u2σ) = a3
σ v̄

3
1 .

We present the E3-page together with this differential in Figure 6. The reader is
directed to the positive parts of the homotopy, where the slice spectral sequence
looks very much like the homotopy fixed points spectral sequence under the line of
slope 1 through the origin. In negative degrees, we see essentially the dual pattern,
and we will not dwell much on those stems.
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Figure 6. The Slice E3-term for KR
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For KR, the class v̄1 is a unit. This means that we also have a differential

d3(v̄−1
1 u2σ) = a3

σ,

and so a3
σ = 0 from E4 on. This produces a horizontal vanishing line in the spectral

sequence, and E4 = E∞. In particular (even if E4 were not E∞), we see that u2
2σ

is a permanent cycle. We also see that since aσ is nilpotent, the geometric fixed
points of KR is contractible. All of this followed simply from the invertibility of v̄1,
and these types of properties will be key in our identification of the periodicity.

8. Homotopy Fixed Points, Periodicity, and the Spectrum Ω

In this section, we will complete our sketch, tying our Gap Theorem with the
differentials we discovered. In all cases, the classes N2n

2k (r̄i,k) play a special role:
they are carried by regular representation spheres and are seen by the differentials.
Thus upon inverting families of these classes, we get spectra with a gap and for
which the slice spectral sequence is simplified. Since these norms will occur quite
frequently in all that follows, let

Nn
k (x) = NC2n

C
2k

(x).

8.1. The Homotopy Fixed Point and Periodicity Theorems. The last results
needed for various localizations of MU(C2n ) rely on an interplay between things we
can compute for the homotopy fixed points and things we can compute for honest
fixed points. We begin with a slightly general theorem that will greatly help us.
Let EG denote the free contractible G-space. Recall also that we defined spaces
EFm to be the universal space for the family of proper subgroups of Cpm .

Theorem 8.1. Let R be a G ring spectrum. If for all m > 0
(
ẼFm ∧ R

)Cpm is
contractible, then the natural map

R→ F (EG+, R)

is a G-weak equivalence.

Proof. The proof is by induction on the order of the group. If the the group is
trivial, then the result is obviously true. Assume now that for all subgroups of Cpn

the result is true and that the geometric fixed point object is contractible. If we
smash the map ι : R→ F (EG+, R) with the isotropy separation sequence, then we
have a diagram

EFn+ ∧R //

EFn+∧ι
��

R //

ι

��

ẼFn ∧R

ẼFn∧ι
��

EFn+ ∧ F (EG+, R) // F (EG+, R) // ẼFn ∧ F (EG+, R).

By induction, the map labeled EFn+∧ι is a G-weak equivalence. By the assumption

on R, the upper right corner is equivariantly contractible. The map labeled ẼFn∧ι
is a ring map, so we learn that it must also be an equivalence. Therefore the map
labeled ι is an equivalence. �

The results of the previous section show us exactly how to ensure that these
geometric fixed points sets are contractible for various MU(C2n )-algebras.
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Theorem 8.2. Let R be an MU(C2n )-algebra. If Nn
1 (r̄2i−1,k) is a unit in π?R,

then
(
ẼFk ∧R

)C
2k is contractible.

Proof. Since we are computing the homotopy groups of the C2k -fixed points, by
naturality of the slice spectral sequence we may assume that k = n and show the
result there.

Theorem 7.16 show that we have a slice differential

u2i−1

2σn
7→ a2i−1

ρ̄ a2i

σ N
n
2 (r̄2i−1,n).

Since Nn
2 (r̄2i−1,n) is a unit, this allows us to conclude that starting on the next page

of the spectral sequence a2i+1
σ a2i−1

ρ̄ = 0. Simple computations with the complexes
occurring in the slice tower show that there are not possible targets for a hidden aσ-
multiplication (as this class is always at the farthest edge of the vanishing region), so
we conclude that after inverting aσ, we get the zero ring. This gives the result. �

Corollary 8.3. If R is an MU(C2n )-algebra in which Nn
1 (r̄2i−1,k) is a unit, then

u2i

2σk
is a permanent cycle.

Proof. Again, the statement is one taking place for C2k fixed points, so we may

assume k = n. If we smash the slice tower ofMU(C2n ) with S2jσ and take homotopy,

then we get a spectral sequence computing π∗(Σ
2jσMU(C2n )). Using our complexes,

it is easy to see that the last possible differential on u2j−1

2σ (which indeed is the only
possible differential) is the one we found using power operations.

Since under the hypothesis the target of the differential on u2i

2σ is obviously

already killed, we conclude that u2i

2σ is a permanent cycle. �

These two results are the heart of the Homotopy Fixed Point and Periodicity
theorem.

Theorem 8.4 (Homotopy Fixed Point and Periodicity Theorems). Assume given
a sequence of non-negative numbers i1 through in, let i be the maximum of the ij,
let i′ denote the minimum of the ij, and assume ∆̄ : Smρ → MU(C2n ) is divisible
by Nn

1 (r̄2ik−1,k) for all k. Then

(1) We have a weak equivalence
(
∆̄−1MU(C2n )

)C2n '
(
∆̄−1MU(C2n )

)hC2n .

(2) The class u2i

2ρ lifts to a non-zero homotopy class in ∆̄−1MU(C2n ).

(3) π∗∆̄
−1MU(C2n ) is 2n · lcm(2i+1, (2i

′ − 1))-periodic.

While not immediately obviously so, all three parts of this result are intimately
related and are simple consequences of our earlier theorems. For this reason, we
link them into a single result

Proof. The proof of the first part is immediate from Theorems 8.1 and 8.2. For the

second part, we know from Corollary 8.3 that for all k, u2i

2σk
is a permanent cycle

and therefore a homotopy class. This means that for all k Nn
k (u2i

2σk
) is a permanent

cycle and therefore a homotopy class, and so multiplying these classes gives

u2i

2ρ =

n∏
k=1

Nn
k (u2i

2σk
)

is a permanent cycle and a homotopy class.
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The third result combines the first two. The class u2i

2ρ gives an equivariant map

Σ2i+n+1

∆̄−1MU(C2n ) → Σ2i+1ρ∆̄−1MU(C2n ),

and when we restrict to the trivial group, this map is the identity. Thus we have an
equivariant map that is an underlying equivalence, and that gives us an equivalence
on homotopy fixed points. Since these are the same as honest fixed points, we

conclude that the class u2i

2ρ is invertible in π?∆̄
−1MU(C2n ). The desired periodicity

arises by multiplying u2i

2ρ by the appropriate powers of Nn
k (r̄2ik−1,k) as k-varies (all

of which will be invertible classes in trivial stems). If we chose ik to be minimal,
then we get the smallest predictable periodicity. �

Since ∆̄ in the previous theorem is carried by a regular representation sphere, we
also conclude that π−2∆̄−1MU(C2n ) = 0. Since the homotopy groups are periodic,
this shows that a large number of groups are actually zero. We should stress here the
importance of the Homotopy Fixed Point theorem. The Detection ad Periodicity
Theorems are proved for the homotopy fixed points of Ω̃, not the honest fixed
points. On the other hand, the Gap Theorem is proved for honest fixed points
which a priori only map to the homotopy fixed points. The Homotopy Fixed Point
Theorem provides the bridge between the two kinds of results.

8.2. The Spectrum Ω and the Detection Theorem. As was described early
on, our spectrum Ω̃ is a stand-in for E4 with the C8-action. We will build Ω̃ by
inverting equivariant classes for each of the subgroups of C8, just as in the Homotopy
Fixed Points Theorem, while ensuring that we have good equivariant maps from
these localizations to E4.

We first look at the underlying spectrum for MUC8 . This is MU ∧ MU ∧
MU∧MU with the permutation action of C8, and the underlying homotopy groups
represent the data of having 4 formal group laws F1, . . . , F4 together with a chain
of isomorphisms

F1
γ−→ F2

γ−→ F3
γ−→ F4

such that γ4 = [−1](x). In particular, we have a canonical map

π∗(MU ∧MU ∧MU ∧MU)→ π∗E4

that classifies the universal deformation formal group law carried by E4, together
with its translates under the group C8. This then gives us by construction a C8-
equivariant map

MU ∧MU ∧MU ∧MU → E4.

Through this map, we will isolate equivariant elements which can be safely inverted
without destroying the detection of the Kervaire classes.

In particular, we have the following result, since E4 is v4-periodic and since
r15,1 ≡ v4 modulo the previous classes.

Proposition 8.5. The map

MU ∧MU ∧MU ∧MU → E4

factors through
(
N3

1 v̄4

)−1
MU ∧MU ∧MU ∧MU .

To fully spell out the reasoning for inverting the classes we do, we must have
a brief digression into the Morava stabilizer group S4 [25]. By definition, this is
the automorphism group of the Honda formal group law, and it can be realized
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as the group of units of the maximal order of the division ring over Q2 of Hasse
invariant 1/4. In particular, using a presentation of this division ring, we can write
any element g ∈ S4 as

g =

∞∑
j=0

tj(g
−1)T j ,

where tj(g
−1) is an element of F15. As is suggested by the notation, the symbols tj

are functions on the Morava stabilizer group, and they are also the images of the
elements by the same name in BP∗BP . Thus this formula reflects the interplay
between the BP∗BP -coaction and the group action. For us, the most important
part is that we can check if the value of ti on a group element is a non-zero element of
π∗E4 modulo the maximal ideal. Since π∗E4 is a complete local ring, any element in
π∗E4 that has non-zero reduction modulo the maximal ideal is a unit. Restricting
attention to C4, this gives us another class we can invert, since an elementary
argument involving valuations shows that t2(γ2) 6= 0. Modulo lower classes, t2 ≡
r3,2.

Proposition 8.6. The map

MU ∧MU ∧MU ∧MU → E4

factors through
(
N3

1 r̄3,2

)−1
MU ∧MU ∧MU ∧MU .

As stated, the result about the interplay between the elements ti and the group
action is for MU ∧MU (really BP ∧ BP ). We are working with MU ∧MU ∧
MU ∧MU . However, a similar analysis shows that we have the same relationship
between the classes r2i−1,3 and the generator γ (in fact, this is essentially a way we
could define r1,3). The same valuation argument use for C4 shows that r1,3(γ) 6= 0.

Proposition 8.7. The map

MU ∧MU ∧MU ∧MU → E4

factors through
(
N3

1 r̄1,3

)−1
MU ∧MU ∧MU ∧MU .

At this point, we can no longer say if there are any elements we can obviously
invert. We have inverted appropriate norm classes for each subgroup, and we know
that the resulting map has an equivariant map from the underlying spectrum to
E4. We can therefore define Ω̃.

Definition 8.8. Let Ω̃ be(
N3

1 r̄1,3

)−1(
N3

1 r̄3,2

)−1(
N3

1 r̄15,1

)−1
MUC8

.

Recall that Ω was defined to be the fixed points of Ω̃. An immediate application
of our big theorems shows the following.

Corollary 8.9.

(1) The homotopy groups of Ω are 256-periodic.
(2) We have π−2Ω = 0.

(3) We have an equivalence Ω ' Ω̃hC8 .

These are exactly the properties needed to prove the Kervaire theorem. We state
without proof the final piece. The argument for this is classical: we show using
the homotopy fixed point spectral sequence and the comparison with the Adams-
Novikov spectral sequence that any element representing the Kervaire classes maps
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to a non-zero element. Since the argument is of a decidedly different flavor, we refer
the reader to the main paper.

Theorem 8.10 (Detection Theorem). If θj ∈ π2j+1−2S
0 is non-zero, then it has

non-zero Hurewicz image in π∗Ω.

Since these elements are then detected in the zero group for j ≥ 7, we conclude
that these elements do not survive.
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