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1. Introduction

This short paper arose as a warm-up to the more difficult computations at the
primes 2 and 3 of connective versions of Behrens’ Q(2) spectrum, a spectrum con-
jecturally describing half of the K(2)-local sphere [2]. The natural starting case
is to understand the K(1)-local story, giving rise to the present discussion of the
homology of the connective image of J spectrum. The homology results are by no
means new: a great many authors, including Davis, Knapp, and Angeltveit-Rognes
have given descriptions of the results [3, 5, 1]. The description herein contains an
easier description using very general properties of comodules over a coalgebra or
over a Hopf algebra, and so can be readily adapted to other situations. We also
present a computation of the homotopy Hopf algebra of HFp∧jHFp for odd primes
p, a Hopf algebra suitable for computing the j-homology of a finite j-module using
a modified Adams spectral sequence similar to that employed by the author in [4].

2. Cyclic Comodules

In this section, we recast some easy and well-known statements about modules
over an algebra A into statements about comodules over a graded coalgebra of
finite type C. All algebras and coalgebras are taken over a ground field k, and
everything considered will be graded and finite type. In particular, Hom is a functor
to graded vector spaces over k. We begin with dual versions of generators and finite
generation.

Definition 2.1. Let N be a comodule with coaction ψ. A set of cogenerators for N
is a collection {fi|i ∈ I} of elements of N∗ such that the map N → ∏

I C defined
by the composite

N
ψ−→ C ⊗k N 1⊗Q fi−−−−−→

∏

I

C

is injective.
A comodule is finitely cogenerated if the set I can be chosen to be finite.
A comodule is cyclic if the set I can be chosen to be the one point set.

These definitions are simply the linear dual of the corresponding statements
for modules over an algebra. We will focus exclusively from this point on cyclic
comodules.

Proposition 2.2. If N is a C-comodule, then there is a natural isomorphism

Hom(N,C) ∼= N∗.
1
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Proof. This statement is the dual of the statement that if M is an A-algebra then
Hom(A,M) = M . Since everything is assumed to be finite type, the result follows
from the isomorphism Hom(N,C) ∼= Hom(C∗, N∗).

The natural map Hom(N,C) → N∗ is defined by composing a comodule map
N → C with the augmentation C → k. �

Since cyclic comodules can be viewed as subcomodules of C, we can identify
Hom(N,M) with a subspace of N∗ whenever M is a cyclic comodule.

This set-up allows us to easily identify large pieces of the kernel of a map.

Lemma 2.3. Let F ∈ Hom(N,C) correspond to a functional f ∈ N∗. If N ′ is a
subcomodule of N that is in the kernel of f , then N ′ is in the kernel of F .

Proof. Let ψ be the coaction on N . The map F is defined by the composite (1 ⊗
f) ◦ ψ. Since N ′ is a subcomodule, Im(ψ|N ′) ⊂ C ⊗N ′, and this is annihilated by
f . �

We conclude the section by strengthening several assumptions and getting some
results about multiplicative structures. Let A be a connected Hopf algebra over k,
and let N be a subcomodule of A which is also a subalgebra. All of the examples
we will consider subsequently are of this form.

Lemma 2.4. Let F ∈ Hom(N,A) correspond to an element f ∈ N∗. If f is
primitive in the coalgebra structure induced by the algebra structure in N , then F
is a derivation.

Proof. We must show that F (nm) = nF (m) + F (n)m for all n,m ∈ N . Let

ψ(n) =
∑

i≥0

ai ⊗ ni, ψ(m) =
∑

j≥0

bj ⊗mj ,

where n0 = m0 = 1, a0 = n, b0 = m, and ni and mj are in the kernel of the
augmentation map η for i, j > 0. Since N is a comodule algebra, we conclude that

F (nm) =
∑

i,j≥0

(aibj)f(nimj).

Since f is primitive, we know that

f(nimj) = f(ni)η(mj) + η(ni)f(mj),

and this implies that

F (nm) =


∑

i≥0

(aib0)f(ni)


+


∑

j≥0

(a0bj)f(mj)


 ,

since ni and mj are in the kernel of η for i, j > 0. Pulling b0 = m out on the right
and a0 = n out on the left gives the desired result. �

3. The Odd Primary Case

The odd primary connective j spectrum is defined by the fiber sequence

j → `
ψk−1−−−→ Σ2p−2`,

where k is chosen to be a topological generator of Z×p . Using the cyclic comod-
ule idea, we can easily identify the effect in homology and compute H∗(j) and a
comodule algebra.



CYCLIC COMODULES, THE HOMOLOGY OF j, AND j-HOMOLOGY 3

We first recall that

H∗(`) = Fp[ξ̄1, . . . ]⊗ E(τ̄2, . . . ) ⊂ A∗,
where the inclusion is induced by the zeroth Postnikov section composed with re-
duction modulo p. In particular, this shows that H∗(`) is a subcomodule algebra
of A∗. Proposition 2.2 then immediately implies that

Hom(H∗(`),Σ2p−2A∗) = Fp,
generated by the functional “cap with P1”. This functional is the dual basis vector
to ξ1 in the monomial basis. We will soon see that every one of these comodule
maps has image lying in Σ2p−2H∗(`).

We start by describing some properties of this map.

Lemma 3.1. Let F ∈ Hom(H∗(`),Σ2p−2A∗), and let f denote the corresponding
functional. Then the sub-comodule algebra

(A//A(1))∗ = Fp[ξp1 , ξ̄2, . . . ]⊗ E(τ̄2, . . . )

is in the kernel of F .

Proof. We apply Lemma 2.3. The comodule map F corresponds to a scalar multiple
of the element dual to ξ1 in the basis dual to the monomial basis. This functional
annihilates all of (A//A(1))∗, giving the result. �

Since P1 is a primitive in A, it is one in the dual of H∗(`). This means we can
use Lemma 2.4 to conclude the following corollary.

Corollary 3.2. If p ∈ (A//A(1))∗, then F (pξi1) = pF (ξi1).

Corollary 3.3. The inclusion Σ2p−2H∗(`)→ A∗ induces an isomorphism

Hom(H∗(`),Σ2p−2H∗(`)) ∼= Hom(H∗(`,Σ2p−2A∗).
To finish our analysis of H∗(j), we need to understand F slightly better. Since

over Fp the actual non-zero scalars all give isomorphic results, we need only deter-
mine if F is 0.

Lemma 3.4. The map (ψk − 1)∗ is non-zero if k generates Z×p .

Proof. We assume to the contrary and show that if (ψk−1)∗ is zero, then homotopy
of j is wrong. If (ψk−1)∗ = 0, thenH∗(j) admits a filtration such that the associated
graded as a comodule algebra is H∗(`)⊗E(x2p−3), where x2p−3 is in degree 2p− 3
and is primitive. This filtration gives rise to a spectral sequence computing the
Adams E2 term of the form

E1 = ExtA∗(Fp,H∗(`)⊗ E(x2p−1)) =⇒ ExtA∗(Fp,H∗(j))
and in which the differentials look like Adams d1 differentials.

Since H∗(`) = A∗2E(τ0,τ1)Fp, we can use a change of rings argument to conclude
that the E1 term is actually

ExtE(τ0,τ1)(Fp, E(x2p−3)) = Fp[v0, v1]⊗E(x2p−3),

where the bidegrees, written in the Adams indexing of (t − s, s), are |v0| = (0, 1),
|v1| = (2p − 2, 1), and |x2p−3| = (2p − 3, 0). A picture of this for p = 3 is given in
Figure 1.

At this point, we reach our contradiction. For degree reasons x2p−3 is a perma-
nent cycle. However, for degree reasons, the smallest v0 multiple of it which can
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Figure 1. The E1 term of the Spectral Sequence for π∗(j) at p = 3

be killed is v2
0 . This would force π2p−3(j) = Z/pn where n > 1, contradicting the

known result that π2p−3(j) = Z/p. �
The end result is that we have computed the homology of j.

Theorem 3.5. As a comodule algebra,

H∗(j) = (A//A(1))∗ ⊗E(x2p(p−1)−1),

where x2p(p−1)−1 is primitive and where we have a hidden comodule extension:

ψ(ξp1) = ξp1 ⊗ 1 + 1⊗ ξp1 + τ0 ⊗ x2p(p−1)−1.

Proof. For degree reasons, the algebra structure and the coproduct on x2p(p−1)−1

must be as stated. We resolve the comodule extension by computing Ext of the
associated graded given to us by the fiber sequence. Since as an A∗ comodule
algebra,

Gr(H∗j) = A∗2A(1)∗E(x2p(p−1)−1),
a change of rings argument establishes that

ExtA∗(Fp, Gr(H∗j)) = ExtA(1)∗(Fp,Fp)⊗ E(x2p(p−1)−1).

As an algebra, ExtA(1)∗(Fp,Fp) is generated by classes v0, vp1 , β1, and αi for 1 ≤
i ≤ p− 1, in bidegrees (0, 1), (2p(p− 1), p), (2p(p− 1)− 2, 2), and (2i(p− 1)− 1, i)
respectively, subject to the relations

v0αi = 0, αiαj =

{
0 i+ j 6= p

vp−2
0 β1 i+ j = p.

A picture of the E1 term for the algebraic spectral sequence is presented in
Figure 2 for p = 3. The salient features we will need are identical for large primes.

0 2 4 6 8 10 12 14

0

2

4

6

v0

α1
α2

β1

v3

1

x11

Figure 2. The Algebraic E1 term from Gr(H∗j)

We see for degree reasons that in the first possible algebraic differential is on vp1 ,
hitting vp+1

0 x2p(p−1)−1. In particular, the algebraic E1 page is the Adams E2 page
in the range t− s ≤ 2p(p− 1)− 1 and s < p.
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Since the class β1 is not present in the homotopy of j, we know that it cannot
survive the Adams spectral sequence. For degree reasons, it can support neither
algebraic nor Adams differentials, and it cannot be the target of any algebraic
differentials. We must therefore kill this class with an Adams differential, and for
degree reasons, we must conclude that

d2(x2p(p−1)−1) = β1.

We complete the argument using the fact that j is a ring spectrum and therefore
admits a natural map from the sphere. For t−s < 2p(p−1)−1, the map on Adams
E2 terms induced by the unit map from the sphere is surjective. In the Adams
spectral sequence for the sphere, the class v0β is killed by an Adams d2 originating
on the class h1,1, the class whose bar representative is [ξp1 ]. By naturality of the
Adams spectral sequence, this allows us to conclude that the element h1,1 in the
Adams spectral sequence for the sphere maps to the element v0x2p(p−1)−1. This
in turn implies the desired comodule extension, since v0 multiplication detects τ0
comultiplication.

We remark that naturality of the Adams spectral sequence also forces the afore-
mentioned differential on vp1 , since otherwise a v0 torsion element would map to a v0

torsion free element. The presence of any algebraic differentials implies a non-trivial
comodule extension, and for degree reasons, this is the only possible extension. �

The Adams operations are E∞ ring maps, and this fiber sequence realizes j as
the connective cover of an E∞ ring spectrum, making it an E∞ ring spectrum. We
can apply and our computation of the homology this to compute

Hj
∗H = π∗(HFp ∧j HFp).

Since Hj
∗H is a flat Fp module, it is a Hopf algebra, Ext over which computes the

E2 term of a variant of the Adams spectral sequence in j-modules.

Theorem 3.6. If M is a j-module, then there is an Adams spectral sequence for
the homotopy of the p-completion of M of the form

E2 = ExtHj∗H(Fp, π∗(HFp ∧j M)) =⇒ π∗(M∧p ).

Theorem 3.7. As a Hopf algebra,

Hj
∗H = π∗(HFp ∧j HFp) = Γ(ξ1)⊗ E(τ0, τ1),

where Γ(−) denotes the “divided powers” Hopf algebra.

Proof. There is a topological change of ring equivalence of the form

HFp ∧j HFp = HFp ∧(HFp∧j) (HFp ∧HFp).
If we take homotopy, then there is a Künneth spectral sequence computing the
homotopy of the right hand side with E2 term given by

TorH∗(j)(Fp,A∗).
Since this Tor is computed just using the algebra structure, we conclude that as an
algebra, the E2 term is

Γ(σx2p(p−1)−1)⊗A(1)∗ = Fp[ξ1]/ξp1 ⊗ E(τ0, τ1)⊗ Γ(σx2p(p−1)−1).

For degree reasons, this spectral sequence collapses with no hidden multiplicative
extensions, and thus this is the associated graded Hopf algebra corresponding to a
filtration of Hj

∗H.
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We resolve the issue of hidden comultiplications by computing the Adams E2

term computing the homotopy of j as a j-module. The Künneth spectra sequence
produced an associated graded Hopf algebra ofHj

∗H, and Ext over this Hopf algebra
is the E1 term of a spectral sequence computing Ext over Hj

∗H. The corresponding
Ext group is presented in Figure 3 for p = 3.
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Figure 3. The E1 term computing the Adams E2 term for π∗j
at p = 3

In this, we see that the class β1 is present, and since this class is not in the homo-
topy of j, it cannot survive both the algebraic and the Adams spectral sequences.
For degree reasons, it cannot be the source of any algebraic or Adams differentials,
and it also cannot be the target of any Adams differentials. This means it must
be the target of an algebraic differential, and the only candidate for the source of
such a differential is the class represented in the bar complex by [σx2p(p−1)−1]. The
target of an algebraic differential records the actual coproduct on an element, so
we conclude that

ψ(σx2p(p−1)−1) = (σx2p(p−1)−1)⊗ 1 + 1⊗ (σx2p(p−1)−1) +
p−1∑

i=1

1
p

(
p

i

)
ξi1 ⊗ ξp−i1 .

However, this is exactly the formula that realizes σx2p(p−1)−1 as the pth divided
power of ξ1. �

4. The story at 2

At p = 2 the story is slightly trickier. The only novel point of the computation is
the use of homology, rather than cohomology. The main results about the structure
of the induced map in homology and the resolution of extensions is identical to the
treatment of Davis [3]. We will therefore omit these arguments. Here our model of
the connective image of j spectrum is given by the fiber sequence

j → ko
ψ3−1−−−→ bspin,

where bspin = Σ4kspin. We recall briefly the homologies involved.

Proposition 4.1. As a subcomodule algebra of A∗,
H∗(ko) = F2[ξ4

1 , ξ̄
2
2 , ξ̄3, . . . ].

As a subcomodule of A∗, H∗(kspin) is the H∗(ko) submodule generated by 1, ξ2
1 ,

and ξ̄2.
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In particular, all of the lemmata from Section 2 will apply in this context. In
particular, Proposition 2.2 tells us that

Hom(H∗(ko),Σ4A∗) = F2,

generated by the class Sq4 ∈ H∗(ko). Since Sq4 is primitive, Lemma 2.4 tells us
that the non-zero comodule homomorphism is a derivation of H∗(ko)-modules. We
can again also identify immediately a large piece (in fact all) of the kernel of the
non-zero map.

Proposition 4.2. The subcomodule algebra

(A//A(2))∗ = F2[ξ8
1 , ξ̄

4
2 , ξ̄

2
3 , ξ̄4, . . . ]

is in the kernel.

Proof. The non-zero map is determined by the element dual to ξ4
1 in the basis dual

to the monomial basis. Since this is not an element of (A//A(2))∗, Lemma 2.3
gives the result. �

The two maps are therefore determined by their values on their coimages.

Proposition 4.3. The non-zero map is determined by the derivation from (A(2)//A(1))∗
to (A(2)//A(1))∗{1, ξ2

1 , ξ̄2} given on generators by

ξ4
1 7→ 1, ξ̄2

2 7→ ξ2
1 , ξ̄3 7→ ξ̄2.

Corollary 4.4. The kernel of the non-zero map is precisely (A//A(2))∗, and the
cokernel is the quotient of (A//A(1))∗{1, ξ2

1 , ξ̄2} by the subcomodule

(A//A(2))∗{1, ξ2
1 , ξ̄2, ξ̄

2
2 + ξ6

1 , ξ̄3 + ξ4
1 ξ̄2, ξ

2
1 ξ̄3 + ξ̄3

2 , ξ̄
2
2 ξ̄3 + ξ6

1 ξ̄3 + ξ4
1 ξ̄

3
2}.

Just as with the odd primary case, it is easy to show that the map in homology
is the non-zero map.

Theorem 4.5 ([3]). The map (ψ3 − 1)∗ is the non-zero map. As a corollary,

0→ Σ3M → H∗j → (A//A(2))∗ → 0,

where M is the quotient described above, is a short exactly sequence of A∗ comod-
ules.

Just as with p > 2, there is a non-trivial extension of comodules to give H∗j.

Lemma 4.6 ([3]). The short exact sequence

0→ Σ3M → H∗j → (A//A(2))∗ → 0

is not split in comodules. There is a hidden coproduct generated by

ψ(ξ8
1) = ξ8

1 ⊗ 1 + 1⊗ ξ8
1 + ξ1 ⊗ ξ4

1e3,

where e3 is the lowest dimensional class in Σ3M .
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