On the non-existence of elements of Kervaire invariant one

Michael Hill

University of Virginia

ICM Topology Session, Seoul, Korea, 2014

Geometry Converting to Algebra Main Steps in Argument

Poincaré Conjecture & Milnor's Question

Milnor's Questions

How many smooth structures are there on the *n*-sphere?

Theorem (Poincaré Conjecture: Smale-Freedman-Perelman)

If M is a homotopy n-sphere that is a manifold, then M is homeomorphic to S^n .

Geometry Converting to Algebra Main Steps in Argument

Kervaire-Milnor 1963

Definition

Let Θ_n be the group of h-cobordism classes of homotopy *n*-spheres with addition connect sum.

ψ_{n}

Have a map

 $\Theta_n \xrightarrow{\psi_n} \pi_n^s / Im(J).$

Geometry Converting to Algebra Main Steps in Argument

Pontryagin's Work

Definition

A framed n-manifold is an n-manifold with a continuous choice of basis for the normal vectors at every point

Geometry Converting to Algebra Main Steps in Argumen

Pontryagin's Computations

$$\pi_0^s = \mathbb{Z}$$
:

Geometry Converting to Algebra Main Steps in Argument

Framed Surgery

 π_2^s : Pontryagin: **framed surgery**

Geometry Converting to Algebra Main Steps in Argument

Consequences

 ψ_2 not onto

The map

$$\Theta_2 \rightarrow \pi_2^s/Im(J)$$

is not surjective.

Get a map

$$\mu \colon H_n(M;\mathbb{Z}) \to \mathbb{Z}/2\mathbb{Z}.$$

If we can do surgery: 0, if we can't: 1.

Geometry Converting to Algebra Main Steps in Argument

Back to Ψ_n

Definition

Let bP_{n+1} be the subset of Θ_n of those spheres that bound parallelizable (frameable) manifolds.

Theorem (Kervaire-Milnor)

If $n \neq 2 \mod 4$, then there is an exact sequence

$$0
ightarrow bP_{n+1}
ightarrow \Theta_n \xrightarrow{\Psi_n} \pi_n^s / Im(J)
ightarrow 0.$$

If $n \equiv 2 \mod 4$, then there is an exact sequence

$$0 o bP_{n+1} o \Theta_n \xrightarrow{\Psi_n} \pi_n^s / \textit{Im}(J) \xrightarrow{\Phi_n} \mathbb{Z}/2 o bP_n o 0.$$

Geometry Converting to Algebra Main Steps in Argument

bP_{n+1} has a simple structure: it's finite cyclic!

Theorem (Kervaire-Milnor) $|bP_{n+1}| = \begin{cases} 1 & n \equiv 0 \mod 2\\ 1 \text{ or } 2 & n \equiv 1 \mod 4\\ 2^{2k-2}(2^{2k-1}-1)num\left(\frac{4B_k}{k}\right) & n = 4k-1 > 3. \end{cases}$

Theorem (Adams, Mahowald)

 bP_{n+1}

$$|Im(J)| = egin{cases} 1 & n \equiv 2,4,5,6 \mod 8, \ 2 & n \equiv 0,1 \mod 8, \ denom \left(rac{B_k}{4k}
ight) & n = 4k-1. \end{cases}$$

Geometry Converting to Algebra Main Steps in Argument

Kervaire Problem

Definition (Kervaire Invariant)

If M is a framed (4k + 2)-manifold, then the Kervaire invariant Φ_{4k+2} is the obstruction to surgery in the middle dimension.

Kervaire Invariant One Problem

Is there a smooth *n*-manifold of Kervaire invariant one?

Geometry Converting to Algebra Main Steps in Argument

Adams Spectral Sequence

Adams Spectral Sequence

There is a spectral sequence with

$$\Xi_2 = \operatorname{Ext}_{\mathcal{A}}(H^*(Y), H^*(X))$$

and converging to [X, Y].

- (Adem) $\operatorname{Ext}^1(\mathbb{F}_2, \mathbb{F}_2)$ is generated by classes $h_i, i \ge 0$.
- *h_j* survives the Adams SS if R^{2^j} admits a division algebra structure:

$$d_2(h_j) = h_0 h_{j-1}^2.$$

Geometry Converting to Algebra Main Steps in Argument

Browder's Reformulation

Theorem (Browder 1969)

- There are no smooth Kervaire invariant one manifolds in dimensions not of the form 2^{j+1} 2.
- There is such a manifold in dimension 2^{j+1} 2 iff h²_j survives the Adams spectral sequence.

Classical Examples

 $h_1^2: S(\mathbb{C}) \times S(\mathbb{C}) \qquad h_2^2: S(\mathbb{H}) \times S(\mathbb{H}) \qquad h_3^2: S(\mathbb{O}) \times S(\mathbb{O})$

Geometry Converting to Algebra Main Steps in Argument

Adams Spectral Sequence

Hill

Geometry Converting to Algebra Main Steps in Argument

Adams Spectral Sequence

Framed Manifolds & Equivariant Homotopy

Hill

Geometry Converting to Algebra Main Steps in Argument

Previous Progress

Theorem (Mahowald-Tangora)

The class h_4^2 survives the Adams SS.

Theorem (Barratt-Jones-Mahowald)

The class h_5^2 survives the Adams SS.

Geometry Converting to Algebra Main Steps in Argument

Main Theorem

Theorem (H.-Hopkins-Ravenel)

For $j \ge 7$, h_i^2 does not survive the Adams SS.

We produce a cohomology theory $\Omega^*(-)$ such that

the cohomology theory detects the Kervaire classes,

2
$$\Omega^{-2}(pt) = 0$$
, and

$$\ \, \mathfrak{Q}^{k+256}(X)\cong \mathfrak{Q}^k(X).$$

We rigidify to a C_8 -equivariant spectrum $\Omega_{\mathbb{O}}$:

$$\Omega = \Omega_{\mathbb{O}}^{C_8} \simeq \Omega_{\mathbb{O}}^{hC_8}.$$

Geometry Converting to Algebra Main Steps in Argument

Cohomology Theories

Cohomology Theory

{Topological Spaces} $\xrightarrow{E^*}$ {Graded Abelian Groups}

satisfying

- Homotopy Invariance: $f \simeq g \Rightarrow E^*(f) = E^*(g)$
- Summarize Section: $X = B \cup_A C$, then have a long exact sequence

$$\cdots \rightarrow E^n(X) \rightarrow E^n(C) \oplus E^n(B) \rightarrow E^n(A) \rightarrow E^{n+1}(X) \rightarrow \ldots$$

Example

- Singular cohomology
- K-theory (vector bundles on X)

Geometry Converting to Algebra Main Steps in Argument

Spectra in Algebraic Topology

Idea

Spectra represent cohomology theories: $E^n(X) = [X, E_n]$

Spectrum

A sequence of spaces E_1, E_2, \ldots together with equivalences

$$E_n \cong \Omega E_{n+1} = Maps(S^1, E_{n+1})$$

- Singular homology: $H\mathbb{Z}_n = K(\mathbb{Z}, n)$
- **2** *K*-Theory: $KU_{2n} = \mathbb{Z} \times BU$, $KU_{2n-1} = U$.

Geometry Converting to Algebra Main Steps in Argument

Equivariant Homotopy

Equivariant Homotopy

Homotopy theory for spaces with a G-action.

- For $H \subset G$, have "fixed points" E^H .
- There are spheres for every real representation.

Example

If $G = \mathbb{Z}/2$, then we have $S^{\rho_2} = \mathbb{C}^+$ and S^2 .

$$(\boldsymbol{S}^{\rho_2})^{\{\boldsymbol{e}\}} = \boldsymbol{S}^2 \quad (\boldsymbol{S}^{\rho_2})^{\boldsymbol{C}_2} = \mathbb{R}^+ = \boldsymbol{S}^1.$$

Geometry Converting to Algebra Main Steps in Argument

What is our cohomology theory?

Begin with the bordism theory for (almost) complex manifolds: MU.

Theorem

For a finite index subgroup $H \subset G$, there is a multiplicative functor

$$N_{H}^{G}$$
: H-Spectra \rightarrow G-Spectra.

$$MU^{(C_8)} = N_{C_2}^{C_8}MU: \quad MU \otimes MU \otimes MU \otimes MU$$

Hill

2 Localize: $\Omega_{\mathbb{O}} = \overline{\Delta}^{-1} M U^{(C_8)}$.

Slice Basics Gap Theorem: $\pi_{-2}\Omega=0$ HFP & Periodicity: $\pi_{k+256}\Omega=\pi_k\Omega$

Structure of *MU*^(C₈)

Goal

Want to compute the homotopy groups of the fixed points for spectra like $\Omega_{\mathbb{O}}.$

Start with Schubert cells: The Grassmanians $Gr_n(\mathbb{C}^k)$ all have cells of the form \mathbb{C}^m

For $MU^{(C_8)}$, we therefore see three kinds of representation spheres:

Hill

Slice Basics Sap Theorem: $\pi_{-2}\Omega=0$ HFP & Periodicity: $\pi_{k+256}\Omega=\pi_k\Omega$

Advantages of the Slice SS

Slice Basics Sap Theorem: $\pi_{-2}\Omega=0$ HFP & Periodicity: $\pi_{k+256}\Omega=\pi_k\Omega$

Advantages of the Slice SS

Slice Basics Gap Theorem: $\pi_{-2}\Omega = 0$ HFP & Periodicity: $\pi_{k+256}\Omega = \pi_k\Omega$

Slice Filtration of MU^(C8)

Theorem

There is a multiplicative filtration of $MU^{(C_8)}$ with associated graded

$$\bigvee_{
ho \in \mathcal{P}} \mathit{Ind}_{H(
ho)}^{C_8} \mathcal{S}^{k(
ho)
ho_{H(
ho)}} \wedge H \overline{\mathbb{Z}}.$$

Corollary

There is a spectral sequence

$$E_{2}^{s,t} = \bigoplus_{\substack{\rho \in \mathcal{P} \\ |\rho| = t}} H_{t-s}^{H(\rho)} \left(S^{k(\rho)\rho_{H(\rho)}+V}; \underline{\mathbb{Z}} \right) \Longrightarrow \pi_{t-s-V} M U^{(C_{8})}.$$

Slice Basics Gap Theorem: $\pi_{-2}\Omega = 0$ HFP & Periodicity: $\pi_{k+256}\Omega = \pi_k\Omega$

Computing with Slices

Key Fact

The E_2 -term can be computed from equivariant simple chain complexes.

Slice Basics Gap Theorem: $\pi_{-2}\Omega = 0$ HFP & Periodicity: $\pi_{k+256}\Omega = \pi_k\Omega$

Theorem

Gaps

For any non-trivial subgroup H of C_8 and for any induced sphere $Ind_{\kappa}^{C_8}S^{k_{\rho_{\kappa}}}$ with $k \in \mathbb{Z}$,

$$H_{-2}^{K}(S^{k
ho_{K}};\underline{\mathbb{Z}})=0$$

● If
$$k \ge 0$$
 or $k < -2$, then $C_{-2} = 0$

If k = -1, -2, in the relevant degrees, the complex is $\mathbb{Z} \to \mathbb{Z}^2$ by $1 \mapsto (1, 1)$.

Corollary

For any k, $\pi_{-2}\Sigma^{k\rho_8}MU^{(C_8)} = 0$.

Slice Basics Gap Theorem: $\pi_{-2}\Omega = 0$ HFP & Periodicity: $\pi_{k+256}\Omega = \pi_k\Omega$

Homotopy Fixed Points & Periodicity

Euler and Orientation Classes

Homology of representation spheres is generated by Euler classes and orientation classes for representations.

Theorem

- The fixed and homotopy fixed points of Ω₀ agree if all Euler classes are nilpotent.
- The homotopy of the homotopy fixed points of Ω₀ is periodic if some regular representation is orientable.